
Pascal Vittoz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9201036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Directional turnover towards largerâ€ranged plants over time and across habitats. Ecology Letters, 2022, 25, 466-482.	3.0	39
2	A common soil temperature threshold for the upper limit of alpine grasslands in European mountains. Alpine Botany, 2021, 131, 41-52.	1.1	13
3	Climate Change Affects Vegetation Differently on Siliceous and Calcareous Summits of the European Alps. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	12
4	Using automated vegetation cover estimation from close-range photogrammetric point clouds to compare vegetation location properties in mountain terrain. GIScience and Remote Sensing, 2021, 58, 120-137.	2.4	4
5	SoilTemp: A global database of nearâ€surface temperature. Global Change Biology, 2020, 26, 6616-6629.	4.2	122
6	Plant community diversity in the Chobe Enclave, Botswana: Insights for functional habitat heterogeneity for herbivores. Koedoe, 2020, 62, .	0.3	5
7	Disentangling the processes driving plant assemblages in mountain grasslands across spatial scales and environmental gradients. Journal of Ecology, 2019, 107, 265-278.	1.9	26
8	Of niches and distributions: range size increases with niche breadth both globally and regionally but regional estimates poorly relate to global estimates. Ecography, 2019, 42, 467-477.	2.1	41
9	Influence of microclimate and geomorphological factors on alpine vegetation in the Western Swiss Alps. Earth Surface Processes and Landforms, 2019, 44, 3093-3107.	1.2	39
10	Contrasting impacts of climate change on the vegetation of windy ridges and snowbeds in the Swiss Alps. Alpine Botany, 2019, 129, 95-105.	1.1	18
11	The Soil Microbiome of GLORIA Mountain Summits in the Swiss Alps. Frontiers in Microbiology, 2019, 10, 1080.	1.5	78
12	Spatial modelling of soil water holding capacity improves models of plant distributions in mountain landscapes. Plant and Soil, 2019, 438, 57-70.	1.8	14
13	Accelerated increase in plant species richness on mountain summits is linked to warming. Nature, 2018, 556, 231-234.	13.7	580
14	Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines. Science of the Total Environment, 2018, 624, 1429-1442.	3.9	169
15	Recent changes in the plant composition of wetlands in the Jura Mountains. Applied Vegetation Science, 2018, 21, 121-131.	0.9	15
16	Learning from model errors: Can land use, edaphic and very highâ€resolution topoâ€climatic factors improve macroecological models of mountain grasslands?. Journal of Biogeography, 2018, 45, 429-437.	1.4	9
17	Decoupling of topsoil and subsoil controls on organic matter dynamics in the Swiss Alps. Geoderma, 2018, 330, 41-51.	2.3	41
18	Community-level relaxation of plant defenses against herbivores at high elevation. Plant Ecology, 2017, 218, 291-304.	0.7	40

#	Article	IF	CITATIONS
19	Assessing and predicting shifts in mountain forest composition across 25Âyears of climate change. Diversity and Distributions, 2017, 23, 517-528.	1.9	46
20	Uneven rate of plant turnover along elevation in grasslands. Alpine Botany, 2017, 127, 53-63.	1.1	25
21	The Abundance, Diversity, and Metabolic Footprint of Soil Nematodes Is Highest in High Elevation Alpine Grasslands. Frontiers in Ecology and Evolution, 2016, 4, .	1.1	51
22	Variation in Soil Respiration across Soil and Vegetation Types in an Alpine Valley. PLoS ONE, 2016, 11, e0163968.	1.1	21
23	Snowbeds are more affected than other subalpine–alpine plant communities by climate change in the Swiss Alps. Ecology and Evolution, 2016, 6, 6969-6982.	0.8	60
24	A matter of scale: apparent niche differentiation of diploid and tetraploid plants may depend on extent and grain of analysis. Journal of Biogeography, 2016, 43, 716-726.	1.4	73
25	Emergent geomorphic–vegetation interactions on a subalpine alluvial fan. Earth Surface Processes and Landforms, 2016, 41, 72-86.	1.2	22
26	The rich sides of mountain summits – a panâ€European view on aspect preferences of alpine plants. Journal of Biogeography, 2016, 43, 2261-2273.	1.4	107
27	Monitoring and distribution modelling of invasive species along riverine habitats at very high resolution. Biological Invasions, 2016, 18, 3665-3679.	1.2	24
28	Past climateâ€driven range shifts and population genetic diversity in arctic plants. Journal of Biogeography, 2016, 43, 461-470.	1.4	48
29	Very highâ€resolution digital elevation models: are multiâ€scale derived variables ecologically relevant?. Methods in Ecology and Evolution, 2015, 6, 1373-1383.	2.2	56
30	Disjunct populations of <scp>E</scp> uropean vascular plant species keep the same climatic niches. Global Ecology and Biogeography, 2015, 24, 1401-1412.	2.7	39
31	Clonal growth and demography of a hemicryptophyte alpine plant: Leontopodium alpinum Cassini. Alpine Botany, 2015, 125, 31-40.	1.1	11
32	Tree cover at fine and coarse spatial grains interacts with shade tolerance to shape plant species distributions across the Alps. Ecography, 2015, 38, 578-589.	2.1	38
33	Plant functional and phylogenetic turnover correlate with climate and land use in the Western Swiss Alps. Journal of Plant Ecology, 2014, 7, 439-450.	1.2	17
34	Scale decisions can reverse conclusions on community assembly processes. Global Ecology and Biogeography, 2014, 23, 620-632.	2.7	63
35	A Better Understanding of the Ecological Conditions for Leontopodium alpinum Cassini in the Swiss Alps. Folia Geobotanica, 2014, 49, 541-558.	0.4	6
36	Building the niche through time: using 13,000 years of data to predict the effects of climate change on three tree species in Europe. Global Ecology and Biogeography, 2013, 22, 302-317.	2.7	152

#	Article	IF	CITATIONS
37	Spatial predictions of landâ€use transitions and associated threats to biodiversity: the case of forest regrowth in mountain grasslands. Applied Vegetation Science, 2013, 16, 227-236.	0.9	31
38	The accuracy of plant assemblage prediction from species distribution models varies along environmental gradients. Global Ecology and Biogeography, 2013, 22, 52-63.	2.7	121
39	Thermal niches are more conserved at cold than warm limits in arcticâ€alpine plant species. Global Ecology and Biogeography, 2013, 22, 933-941.	2.7	60
40	Improving the prediction of plant species distribution and community composition by adding edaphic to topoâ€climatic variables. Journal of Vegetation Science, 2013, 24, 593-606.	1.1	145
41	Predicting current and future spatial community patterns of plant functional traits. Ecography, 2013, 36, 1158-1168.	2.1	79
42	Climate change impacts on biodiversity in Switzerland: A review. Journal for Nature Conservation, 2013, 21, 154-162.	0.8	61
43	Phylogenetic plant community structure along elevation is lineage specific. Ecology and Evolution, 2013, 3, 4925-4939.	0.8	30
44	Elevation gradient of successful plant traits for colonizing alpine summits under climate change. Environmental Research Letters, 2013, 8, 024043.	2.2	95
45	Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Climate Change, 2012, 2, 619-622.	8.1	582
46	Improving plant functional groups for dynamic models of biodiversity: at the crossroads between functional and community ecology. Global Change Biology, 2012, 18, 3464-3475.	4.2	62
47	Continent-wide response of mountain vegetation to climate change. Nature Climate Change, 2012, 2, 111-115.	8.1	941
48	Recent Plant Diversity Changes on Europe's Mountain Summits. Science, 2012, 336, 353-355.	6.0	732
49	Ecological assembly rules in plant communities—approaches, patterns and prospects. Biological Reviews, 2012, 87, 111-127.	4.7	717
50	The Alps Vegetation Database – a geo-referenced community-level archive of all terrestrial plants occurring in the Alps. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 331-332.	0.2	8
51	Permanent.Plot.ch – a database for Swiss permanent vegetation plots. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 337-337.	0.2	2
52	21st century climate change threatens mountain flora unequally across Europe. Global Change Biology, 2011, 17, 2330-2341.	4.2	478
53	Subalpine-nival gradient of species richness for vascular plants, bryophytes and lichens in the Swiss Inner Alps. Botanica Helvetica, 2010, 120, 139-149.	1.1	66
54	Plant traits co-vary with altitude in grasslands and forests in the European Alps. Plant Ecology, 2010, 211, 351-365.	0.7	95

#	Article	IF	CITATIONS
55	Spatial pattern of floral morphology: possible insight into the effects of pollinators on plant distributions. Oikos, 2010, 119, 1805-1813.	1.2	61
56	Reproducibility of species lists, visual cover estimates and frequency methods for recording high-mountain vegetation. Journal of Vegetation Science, 2010, 21, 1035-1047.	1.1	68
57	Going against the flow: potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography, 2010, 33, 295-303.	2.1	304
58	Species distribution models reveal apparent competitive and facilitative effects of a dominant species on the distribution of tundra plants. Ecography, 2010, 33, 1004-1014.	2.1	148
59	Cross-Scale Analysis of the Region Effect on Vascular Plant Species Diversity in Southern and Northern European Mountain Ranges. PLoS ONE, 2010, 5, e15734.	1.1	53
60	Generalized food-deceptive orchid species flower earlier and occur at lower altitudes than rewarding ones. Journal of Plant Ecology, 2010, 3, 243-250.	1.2	29
61	Diaspore traits discriminate good from weak colonisers on high-elevation summits. Basic and Applied Ecology, 2009, 10, 508-515.	1.2	54
62	Low impact of climate change on subalpine grasslands in the Swiss Northern Alps. Global Change Biology, 2009, 15, 209-220.	4.2	101
63	Climate change and plant distribution: local models predict highâ€elevation persistence. Global Change Biology, 2009, 15, 1557-1569.	4.2	450
64	Land use improves spatial predictions of mountain plant abundance but not presenceâ€absence. Journal of Vegetation Science, 2009, 20, 996-1008.	1.1	57
65	Predicting future distributions of mountain plants under climate change: does dispersal capacity matter?. Ecography, 2009, 32, 34-45.	2.1	229
66	Importance of abiotic stress as a rangeâ€imit determinant for European plants: insights from species responses to climatic gradients. Global Ecology and Biogeography, 2009, 18, 437-449.	2.7	194
67	Introduction of Snow and Geomorphic Disturbance Variables into Predictive Models of Alpine Plant Distribution in the Western Swiss Alps. Arctic, Antarctic, and Alpine Research, 2009, 41, 347-361.	0.4	59
68	Biomass production of the last remaining fen with Saxifraga hirculus in Switzerland is controlled by nitrogen availability. Botanica Helvetica, 2008, 118, 165-174.	1.1	4
69	Pollen productivity estimates and relevant source area of pollen for selected plant taxa in a pasture woodland landscape of the Jura Mountains (Switzerland). Vegetation History and Archaeobotany, 2008, 17, 479-495.	1.0	87
70	One century of vegetation change on Isla Persa, a nunatak in the Bernina massif in the Swiss Alps. Journal of Vegetation Science, 2008, 19, 671-680.	1.1	74
71	Prediction of plant species distributions across six millennia. Ecology Letters, 2008, 11, 357-369.	3.0	183
72	Effects of Climate and Land-Use Change on the Establishment and Growth of Cembran Pine (Pinus) Tj ETQq0 0 0	rgBT /Ove 0.4	erlock 10 Tf 5 88

#	Article	IF	CITATIONS
73	Weak and variable relationships between environmental severity and smallâ€scale coâ€occurrence in alpine plant communities. Journal of Ecology, 2007, 95, 1284-1295.	1.9	86
74	How reliable is the monitoring of permanent vegetation plots? A test with multiple observers. Journal of Vegetation Science, 2007, 18, 413-422.	1.1	134
75	Seed dispersal distances: a typology based on dispersal modes and plant traits. Botanica Helvetica, 2007, 117, 109-124.	1.1	296
76	How reliable is the monitoring of permanent vegetation plots? A test with multiple observers. , 2007, 18, 413.		11
77	Ecological conditions for Saxifraga hirculus in Central Europe: A better understanding for a good protection. Biological Conservation, 2006, 131, 594-608.	1.9	21
78	Cadmium Hyperaccumulation and Reproductive Traits in Natural Thlaspi caerulescens Populations. Plant Biology, 2006, 8, 64-72.	1.8	36
79	Les pelouses à Festuca paniculata du Tessin (Suisse) dans un contexte Alpin. Botanica Helvetica, 2005, 115, 33-48.	1.1	14
80	Rarity types among plant species with high conservation priority in Switzerland. Botanica Helvetica, 2005, 115, 95-108.	1.1	43
81	Impact of freeâ€range pigs on mountain pastures in the Swiss Jura. Applied Vegetation Science, 2002, 5, 247-254.	0.9	11
82	Earthquake impacts in oldâ€growth Nothofagus forests in New Zealand. Journal of Vegetation Science, 2001, 12, 417-426.	1.1	64