Imrich Gablech

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9200871/publications.pdf

Version: 2024-02-01

1307594 996975 21 235 7 15 citations g-index h-index papers 21 21 21 303 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Monoelemental 2D materials-based field effect transistors for sensing and biosensing: Phosphorene, antimonene, arsenene, silicene, and germanene go beyond graphene. TrAC - Trends in Analytical Chemistry, 2018, 105, 251-262.	11.4	67
2	Nanostructured Gold Microelectrode Array for Ultrasensitive Detection of Heavy Metal Contamination. Analytical Chemistry, 2018, 90, 1161-1167.	6.5	38
3	Direct measurement of oxygen reduction reactions at neurostimulation electrodes. Journal of Neural Engineering, 2022, 19, 036045.	3 . 5	19
4	Preparation of (001) preferentially oriented titanium thin films by ion-beam sputtering deposition on thermal silicon dioxide. Journal of Materials Science, 2016, 51, 3329-3336.	3.7	17
5	Simple and Efficient AlN-Based Piezoelectric Energy Harvesters. Micromachines, 2020, 11, 143.	2.9	17
6	Precise determination of thermal parameters of a microbolometer. Infrared Physics and Technology, 2018, 93, 286-290.	2.9	13
7	Preparation of high-quality stress-free (001) aluminum nitride thin film using a dual Kaufman ion-beam source setup. Thin Solid Films, 2019, 670, 105-112.	1.8	11
8	<i>In situ</i> observation of carbon nanotube layer growth on microbolometers with substrates at ambient temperature. Journal of Applied Physics, 2018, 123, .	2.5	7
9	Heat transfer time determination based on DNA melting curve analysis. Microfluidics and Nanofluidics, 2020, 24, 1.	2.2	7
10	nanolithography toolbox—Simplifying the design complexity of microfluidic chips. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, 063002.	1.2	7
11	Stress-free deposition of [001] preferentially oriented titanium thin film by Kaufman ion-beam source. Thin Solid Films, 2017, 638, 57-62.	1.8	5
12	Single Measurement Determination of Mechanical, Electrical, and Surface Properties of a Single Carbon Nanotube via Force Microscopy. Sensors and Actuators A: Physical, 2018, 271, 217-222.	4.1	5
13	Fabrication of highly ordered short free-standing titania nanotubes. Monatshefte Für Chemie, 2016, 147, 943-949.	1.8	4
14	Self-compensating method for bolometer–based IR focal plane arrays. Sensors and Actuators A: Physical, 2017, 265, 40-46.	4.1	4
15	A Self-compensating System for Fixed Pattern Noise Reduction of Focal Plane Arrays of Infrared Bolometer Detectors. Procedia Engineering, 2016, 168, 1007-1011.	1.2	3
16	Fabrication of buried microfluidic channels with observation windows using femtosecond laser photoablation and parylene-C coating. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	3
17	Infinite Selectivity of Wet SiO2 Etching in Respect to Al. Micromachines, 2020, 11, 365.	2.9	3
18	Mechanical strain and electric-field modulation of graphene transistors integrated on MEMS cantilevers. Journal of Materials Science, 2022, 57, 1923-1935.	3.7	3

#	Article	IF	CITATIONS
19	SiO ₂ â€Decorated Parylene C Micropillars Designed to Probe Cellular Force. Advanced Materials Interfaces, 2021, 8, 2001897.	3.7	2
20	MEMS Microhotplates for Chemical Sensors. , 2018, , .		0
21	A New Method for 2D Materials Properties Modulation by Controlled Induced Mechanical Strain. Proceedings (mdpi), 2018, 2, .	0.2	O