Fang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/920075/publications.pdf

Version: 2024-02-01

66 papers 3,210 citations

186209
28
h-index

149623 56 g-index

68 all docs 68
docs citations

68 times ranked 4797 citing authors

#	Article	IF	CITATIONS
1	The Smart Drug Delivery System and Its Clinical Potential. Theranostics, 2016, 6, 1306-1323.	4.6	718
2	Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging. Biomaterials, 2009, 30, 3882-3890.	5.7	265
3	Platelet Membrane Biomimetic Magnetic Nanocarriers for Targeted Delivery and <i>in Situ</i> Generation of Nitric Oxide in Early Ischemic Stroke. ACS Nano, 2020, 14, 2024-2035.	7.3	156
4	Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications. Theranostics, 2020, 10, 462-483.	4.6	154
5	A Hydrogen Peroxideâ€Responsive O ₂ Nanogenerator for Ultrasound and Magneticâ€Resonance Dual Modality Imaging. Advanced Materials, 2012, 24, 5205-5211.	11.1	117
6	Magnetic Nanoliposomes as <i>in Situ</i> Microbubble Bombers for Multimodality Image-Guided Cancer Theranostics. ACS Nano, 2017, 11, 1509-1519.	7.3	112
7	Experimental study on cell self-sealing during sonoporation. Journal of Controlled Release, 2008, 131, 205-210.	4.8	98
8	Accelerating thrombolysis using a precision and clot-penetrating drug delivery strategy by nanoparticle-shelled microbubbles. Science Advances, 2020, 6, eaaz8204.	4.7	98
9	A dual-signal amplification platform for sensitive fluorescence biosensing of leukemia-derived exosomes. Nanoscale, 2018, 10, 20289-20295.	2.8	91
10	Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia. Biomaterials, 2017, 124, 35-46.	5.7	82
11	Platelet bio-nanobubbles as microvascular recanalization nanoformulation for acute ischemic stroke lesion theranostics. Theranostics, 2018, 8, 4870-4883.	4.6	70
12	Magnetic field activated drug release system based on magnetic PLGA microspheres for chemo-thermal therapy. Colloids and Surfaces B: Biointerfaces, 2015, 136, 712-720.	2.5	65
13	Applications of Magnetic Microbubbles for Theranostics. Theranostics, 2012, 2, 103-112.	4.6	61
14	Superparamagnetic nanoparticle-inclusion microbubbles for ultrasound contrast agents. Physics in Medicine and Biology, 2008, 53, 6129-6141.	1.6	59
15	Glucose and magnetic-responsive approach toward in situ nitric oxide bubbles controlled generation for hyperglycemia theranostics. Journal of Controlled Release, 2016, 228, 87-95.	4.8	56
16	Bulk Nanobubbles Fabricated by Repeated Compression of Microbubbles. Langmuir, 2019, 35, 4238-4245.	1.6	54
17	Dynamic tracking of bulk nanobubbles from microbubbles shrinkage to collapse. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124430.	2.3	50
18	Bubble Microreactors Triggered by an Alternating Magnetic Field as Diagnostic and Therapeutic Delivery Devices. Small, 2010, 6, 1300-1305.	5.2	48

#	Article	IF	CITATIONS
19	Achieving Ultrasmall Prussian Blue Nanoparticles as High-Performance Biomedical Agents with Multifunctions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 57382-57390.	4.0	48
20	Controlled Release of Fe ₃ O ₄ Nanoparticles in Encapsulated Microbubbles to Tumor Cells via Sonoporation and Associated Cellular Bioeffects. Small, 2011, 7, 902-910.	5.2	41
21	A Multiâ€Gradient Targeting Drug Delivery System Based on RGDâ€ <scp>l</scp> â€TRAILâ€Labeled Magnetic Microbubbles for Cancer Theranostics. Advanced Functional Materials, 2016, 26, 8313-8324.	7.8	41
22	Magnetic drug delivery systems. Science China Materials, 2017, 60, 471-486.	3 . 5	41
23	Sphingosine 1â€Phosphate Liposomes for Targeted Nitric Oxide Delivery to Mediate Anticancer Effects against Brain Glioma Tumors. Advanced Materials, 2021, 33, e2101701.	11.1	41
24	Mesenchymal Stem Cell Transplantation Enhancement in Myocardial Infarction Rat Model under Ultrasound Combined with Nitric Oxide Microbubbles. PLoS ONE, 2013, 8, e80186.	1.1	39
25	A Novel Approach to Making the Gas-Filled Liposome Real: Based on the Interaction of Lipid with Free Nanobubble within the Solution. ACS Applied Materials & Interfaces, 2015, 7, 26579-26584.	4.0	35
26	Microbubbles with surface coated by superparamagnetic iron oxide nanoparticles. Materials Letters, 2012, 68, 64-67.	1.3	33
27	Controlled Drug Release and Hydrolysis Mechanism of Polymer–Magnetic Nanoparticle Composite. ACS Applied Materials & Interfaces, 2015, 7, 9410-9419.	4.0	33
28	Silver Nanoparticle-Embedded Microbubble as a Dual-Mode Ultrasound and Optical Imaging Probe. ACS Applied Materials & Dual-Mode Ultrasound and Optical Imaging Probe. ACS Applied Materials & Dual-Mode Ultrasound and Optical Imaging Probe. ACS Applied Materials & Dual-Mode Ultrasound and Optical Imaging Probe. ACS Applied Materials & Dual-Mode Ultrasound and Optical Imaging Probe. ACS Applied Materials & Dual-Mode Ultrasound and Optical Imaging Probe. ACS Applied Materials & Dual-Mode Ultrasound and Optical Imaging Probe. ACS Applied Materials & Dual-Mode Ultrasound and Optical Imaging Probe. ACS Applied Materials & Dual-Mode Ultrasound and Optical Imaging Probe. ACS Applied Materials & Dual-Mode Ultrasound and Optical Imaging Probe. ACS Applied Materials & Dual-Mode Ultrasound Applied Materials & Dual-Mode	4.0	29
29	Controlled assembly of magnetic nanoparticles on microbubbles for multimodal imaging. Soft Matter, 2015, 11, 5492-5500.	1.2	29
30	Novel magnetic silk fibroin scaffolds with delayed degradation for potential long-distance vascular repair. Bioactive Materials, 2022, 7, 126-143.	8.6	27
31	Magnet-activatable nanoliposomes as intracellular bubble microreactors to enhance drug delivery efficacy and burst cancer cells. Nanoscale, 2019, 11, 18854-18865.	2.8	24
32	Multiple emulsion microbubbles for ultrasound imaging. Materials Letters, 2008, 62, 121-124.	1.3	23
33	Acid-degradable gadolinium-based nanoscale coordination polymer: A potential platform for targeted drug delivery and potential magnetic resonance imaging. Nano Research, 2018, 11, 929-939.	5 . 8	22
34	Superparamagnetic iron oxide nanoparticles assembled magnetic nanobubbles and their application for neural stem cells labeling. Journal of Materials Science and Technology, 2021, 63, 124-132.	5. 6	22
35	Rapid in situ biosynthesis of gold nanoparticles in living platelets for multimodal biomedical imaging. Colloids and Surfaces B: Biointerfaces, 2018, 163, 385-393.	2.5	21
36	A targeting drug-delivery model via interactions among cells and liposomes under ultrasonic excitation. Physics in Medicine and Biology, 2008, 53, 3251-3265.	1.6	20

#	Article	IF	Citations
37	A biomimetic nanocomposite with enzyme-like activities and CXCR4 antagonism efficiently enhances the therapeutic efficacy of acute myeloid leukemia. Bioactive Materials, 2022, 18, 526-538.	8.6	19
38	Preparation and <i>in vivo</i> safety evaluations of antileukemic homoharringtonine-loaded PEGylated liposomes. Drug Development and Industrial Pharmacy, 2017, 43, 652-660.	0.9	18
39	Protective effect of sphingosine-1-phosphate for chronic intermittent hypoxia-induced endothelial cell injury. Biochemical and Biophysical Research Communications, 2018, 498, 1016-1021.	1.0	17
40	An acoustic strategy for gold nanoparticle loading in platelets as biomimetic multifunctional carriers. Journal of Materials Chemistry B, 2019, 7, 2138-2144.	2.9	17
41	Altering the response of intracellular reactive oxygen to magnetic nanoparticles using ultrasound and microbubbles. Science China Materials, 2015, 58, 467-480.	3.5	16
42	Magnetic internal heating-induced high performance Prussian blue nanoparticle preparation and excellent catalytic activity. Dalton Transactions, 2019, 48, 17169-17173.	1.6	16
43	Indocyanine Green Assembled Nanobubbles with Enhanced Fluorescence and Photostability. Langmuir, 2020, 36, 12983-12989.	1.6	15
44	Ultrasound-sensitive siRNA-loaded nanobubbles fabrication and antagonism in drug resistance for NSCLC. Drug Delivery, 2022, 29, 99-110.	2.5	15
45	Clickâ€Chemistryâ€Mediated Rapid Microbubble Capture for Acute Thrombus Ultrasound Molecular Imaging. ChemBioChem, 2017, 18, 1364-1368.	1.3	14
46	Xenon Nanobubbles for the Image-Guided Preemptive Treatment of Acute Ischemic Stroke via Neuroprotection and Microcirculatory Restoration. ACS Applied Materials & Samp; Interfaces, 2021, 13, 43880-43891.	4.0	14
47	Magnetic Nanobubble Mechanical Stress Induces the Piezo1â€Ca ²⁺ â€BMP2/Smad Pathway to Modulate Neural Stem Cell Fate and MRI/Ultrasound Dual Imaging Surveillance for Ischemic Stroke. Small, 2022, 18, e2201123.	5.2	14
48	Inhibitory effect of epirubicin-loaded lipid microbubbles with conjugated anti-ABCG2 antibody combined with therapeutic ultrasound on multiple myeloma cancer stem cells. Journal of Drug Targeting, 2016, 24, 34-46.	2.1	12
49	Cyclic RGD functionalized liposomes targeted to activated platelets for thrombosis dual-mode magnetic resonance imaging. Journal of Materials Chemistry B, 2020, 8, 447-453.	2.9	12
50	Temperature-regulated self-assembly of lipids at free bubbles interface: A green and simple method to prepare micro/nano bubbles. Nano Research, 2020, 13, 999-1007.	5.8	12
51	Hemodynamic Mimic Shear Stress for Platelet Membrane Nanobubbles Preparation and Integrin \hat{l}_{\pm} (sub> \hat{l}_{\pm} (sub> \hat{l}_{\pm} (sub> \hat{l}_{\pm} (sub) 100 Letters, 2022, 22, 271-279.	4.5	10
52	In situ microbubble-assisted, ultrasound-controlled release of superparamagnetic iron oxide nanoparticles from gastro-retentive tablets. International Journal of Pharmaceutics, 2020, 586, 119615.	2.6	9
53	A Multi-Channel System for Temperature Sensing of Neural Stem Cells in Adherent Culture. Analytical Chemistry, 2020, 92, 3270-3275.	3.2	9
54	Fabrication of nonporous and porous cationic PLGA microspheres. Materials Letters, 2014, 117, 86-89.	1.3	8

#	Article	IF	CITATIONS
55	The preparation and application of microbubble contrast agent combining ultrasound imaging and magnetic resonance imaging. Science Bulletin, 2009, 54, 2934-2939.	1.7	6
56	Sinapultide-loaded lipid microbubbles and the stabilization effect of sinapultide on the shells of lipid microbubbles. Journal of Materials Chemistry B, 2018, 6, 1335-1341.	2.9	6
57	Reaction parameter comparison and optimization of multiple displacement amplification. Analytical Methods, 2020, 12, 46-53.	1.3	6
58	The Antiproliferative and Colony-suppressive Activities of STAT3 Inhibitors in Human Cancer Cells Is Compromised Under Hypoxic Conditions. Anticancer Research, 2017, 37, 547-554.	0.5	6
59	Nanoparticle-shelled Microbubbles Used for Medical Ultrasound Nonlinear Imaging. Physics Procedia, 2015, 70, 1074-1078.	1.2	4
60	Mechanical Properties of Sub-Microbubbles with a Nanoparticle-Decorated Polymer Shell. Langmuir, 2019, 35, 17090-17095.	1.6	4
61	Novel microspheres reduce the formation of deep venous thrombosis and repair the vascular wall in a rat model. Blood Coagulation and Fibrinolysis, 2017, 28, 398-406.	0.5	2
62	Theoretical Study of the Effects of Nanoparticles on the Acoustic Performance of Microbubbles. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 54-61.	1.7	2
63	Effects of sleep apnea hypopnea syndromes on cardiovascular events: a systematic review and meta-analysis. Sleep and Breathing, 2022, 26, 5-15.	0.9	2
64	Thermoelectric Materials: Gateâ€Tunable Polar Optical Phonon to Piezoelectric Scattering in Fewâ€Layer Bi ₂ O ₂ Se for Highâ€Performance Thermoelectrics (Adv. Mater. 4/2021). Advanced Materials, 2021, 33, 2170023.	11.1	1
65	Recent progress in bioactive gas delivery for cancer immunotherapy. Progress in Biomedical Engineering, 2022, 4, 022001.	2.8	1
66	Microbubbles for Biomedical Imaging. , 2016, , 53-109.		0