Patricia Gaspar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9200598/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Edinger-Westphal peptidergic neurons enable maternal preparatory nesting. Neuron, 2022, 110, 1385-1399.e8.	3.8	34
2	Serotonin limits generation of chromaffin cells during adrenal organ development. Nature Communications, 2022, 13, .	5.8	8
3	Dorsal raphe serotonin neurotransmission is required for the expression of nursing behavior and for pup survival. Scientific Reports, 2021, 11, 6004.	1.6	6
4	Early-life stress impairs postnatal oligodendrogenesis and adult emotional behaviour through activity-dependent mechanisms. Molecular Psychiatry, 2020, 25, 1159-1174.	4.1	104
5	Implication of 5-HT7 receptor in prefrontal circuit assembly and detrimental emotional effects of SSRIs during development. Neuropsychopharmacology, 2020, 45, 2267-2277.	2.8	11
6	How the Barrel Cortex Became a Working Model for Developmental Plasticity: A Historical Perspective. Journal of Neuroscience, 2020, 40, 6460-6473.	1.7	26
7	From B1 to B9: a guide through hindbrain serotonin neurons with additional views from multidimensional characterization. Handbook of Behavioral Neuroscience, 2020, 31, 23-40.	0.7	6
8	Serotonergic Neurons in Vertebrate and Invertebrate Model Organisms (Rodents, Zebrafish,) Tj ETQq0 0 0 rgBT /	Overlock 1	0 Jf 50 462

9	SSRIs target prefrontal toÂraphe circuits during development modulating synaptic connectivity and emotional behavior. Molecular Psychiatry, 2019, 24, 726-745.	4.1	54
10	RORα Coordinates Thalamic and Cortical Maturation to Instruct Barrel Cortex Development. Cerebral Cortex, 2018, 28, 3994-4007.	1.6	15
11	Serotonin neuron development: shaping molecular and structural identities. Wiley Interdisciplinary Reviews: Developmental Biology, 2018, 7, e301.	5.9	74
12	Constraints on somatosensory map development: mutants lead the way. Current Opinion in Neurobiology, 2018, 53, 43-49.	2.0	6
13	Specific Connectivity and Unique Molecular Identity of MET Receptor Tyrosine Kinase Expressing Serotonergic Neurons in the Caudal Dorsal Raphe Nuclei. ACS Chemical Neuroscience, 2017, 8, 1053-1064.	1.7	24
14	RIM1/2 in retinal ganglion cells are required for the refinement of ipsilateral axons and eye-specific segregation. Scientific Reports, 2017, 7, 3236.	1.6	13
15	Constitutive and Acquired Serotonin Deficiency Alters Memory and Hippocampal Synaptic Plasticity. Neuropsychopharmacology, 2017, 42, 512-523.	2.8	78
16	Refining the Role of 5-HT in Postnatal Development of Brain Circuits. Frontiers in Cellular Neuroscience, 2017, 11, 139.	1.8	69
17	Cadherin-13 Deficiency Increases Dorsal Raphe 5-HT Neuron Density and Prefrontal Cortex Innervation in the Mouse Brain. Frontiers in Cellular Neuroscience, 2017, 11, 307.	1.8	21
18	Necdin shapes serotonergic development and SERT activity modulating breathing in a mouse model for Prader-Willi syndrome. ELife, 2017, 6, .	2.8	27

#	Article	IF	CITATIONS
19	A mutant with bilateral whisker to barrel inputs unveils somatosensory mapping rules in the cerebral cortex. ELife, 2017, 6, .	2.8	24
20	EphrinA5 Signaling Is Required for the Distinctive Targeting of Raphe Serotonin Neurons in the Forebrain. ENeuro, 2017, 4, ENEURO.0327-16.2017.	0.9	19
21	Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5–B9) to the forebrain and brainstem. Brain Structure and Function, 2016, 221, 535-561.	1.2	225
22	Multiscale single-cell analysis reveals unique phenotypes of raphe 5-HT neurons projecting to the forebrain. Brain Structure and Function, 2016, 221, 4007-4025.	1.2	79
23	Serotonin neurons in a dish. Nature Biotechnology, 2016, 34, 41-42.	9.4	5
24	Routes to <scp>cAMP</scp> : shaping neuronal connectivity with distinct adenylate cyclases. European Journal of Neuroscience, 2014, 39, 1742-1751.	1.2	34
25	Lack of adenylate cyclase 1 (AC1): Consequences on corticospinal tract development and on locomotor recovery after spinal cord injury. Brain Research, 2014, 1549, 1-10.	1.1	3
26	Activity dependent mechanisms of visual map formation - From retinal waves to molecular regulators. Seminars in Cell and Developmental Biology, 2014, 35, 136-146.	2.3	50
27	Development of hypothalamic serotoninergic neurons requires Fgf signalling via the ETS-domain transcription factor Etv5b. Development (Cambridge), 2013, 140, 372-384.	1.2	31
28	The Birth of the Barrels. Developmental Cell, 2013, 27, 3-4.	3.1	1
29	Postnatal Growth Defects in Mice with Constitutive Depletion of Central Serotonin. ACS Chemical Neuroscience, 2013, 4, 171-181.	1.7	71
30	Sensory Map Transfer to the Neocortex Relies on Pretarget Ordering of Thalamic Axons. Current Biology, 2013, 23, 810-816.	1.8	41
31	A Subpopulation of Serotonergic Neurons That Do Not Express the 5-HT1A Autoreceptor. ACS Chemical Neuroscience, 2013, 4, 89-95.	1.7	28
32	Paradoxical increase in survival of newborn neurons in the dentate gyrus of mice with constitutive depletion of serotonin. European Journal of Neuroscience, 2013, 38, 2650-2658.	1.2	38
33	Vezatin Is Essential for Dendritic Spine Morphogenesis and Functional Synaptic Maturation. Journal of Neuroscience, 2012, 32, 9007-9022.	1.7	20
34	Investigating anxiety and depressive-like phenotypes in genetic mouse models of serotonin depletion. Neuropharmacology, 2012, 62, 144-154.	2.0	81
35	Neurotransmitter Release at the Thalamocortical Synapse Instructs Barrel Formation But Not Axon Patterning in the Somatosensory Cortex. Journal of Neuroscience, 2012, 32, 6183-6196.	1.7	79
36	Probing the diversity of serotonin neurons. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2382-2394.	1.8	156

#	Article	IF	CITATIONS
37	Modeling Activity and Target-Dependent Developmental Cell Death of Mouse Retinal Ganglion Cells Ex Vivo. PLoS ONE, 2012, 7, e31105.	1.1	8
38	Development and critical period plasticity of the barrel cortex. European Journal of Neuroscience, 2012, 35, 1540-1553.	1.2	275
39	Insights into the complex influence of 5â€HT signaling on thalamocortical axonal system development. European Journal of Neuroscience, 2012, 35, 1563-1572.	1.2	51
40	Development of raphe serotonin neurons from specification to guidance. European Journal of Neuroscience, 2011, 34, 1553-1562.	1.2	84
41	Genetic Models of Serotonin (5â€HT) Depletion: What do They Tell Us About the Developmental Role of 5â€HT?. Anatomical Record, 2011, 294, 1615-1623.	0.8	39
42	Transcription Factor Foxd1 Is Required for the Specification of the Temporal Retina in Mammals. Journal of Neuroscience, 2011, 31, 5673-5681.	1.7	55
43	A Genetically Defined Morphologically and Functionally Unique Subset of 5-HT Neurons in the Mouse Raphe Nuclei. Journal of Neuroscience, 2011, 31, 2756-2768.	1.7	128
44	Severe Serotonin Depletion after Conditional Deletion of the Vesicular Monoamine Transporter 2 Gene in Serotonin Neurons: Neural and Behavioral Consequences. Neuropsychopharmacology, 2011, 36, 2538-2550.	2.8	71
45	New perspectives on the neurodevelopmental effects of SSRIs. Trends in Pharmacological Sciences, 2010, 31, 60-65.	4.0	227
46	Transient Neuronal Populations Are Required to Guide Callosal Axons: A Role for Semaphorin 3C. PLoS Biology, 2009, 7, e1000230.	2.6	141
47	Serotonin transporter transgenic (SERTcre) mouse line reveals developmental targets of serotonin specific reuptake inhibitors (SSRIs). Neuropharmacology, 2008, 55, 994-1005.	2.0	126
48	Nocodazole-Induced Changes in Microtubule Dynamics Impair the Morphology and Directionality of Migrating Medial Ganglionic Eminence Cells. Developmental Neuroscience, 2008, 30, 132-143.	1.0	41
49	Structural Requirement of TAG-1 for Retinal Ganglion Cell Axons and Myelin in the Mouse Optic Nerve. Journal of Neuroscience, 2008, 28, 7624-7636.	1.7	48
50	Developmental Cell Death Is Enhanced in the Cerebral Cortex of Mice Lacking the Brain Vesicular Monoamine Transporter. Journal of Neuroscience, 2007, 27, 1315-1324.	1.7	43
51	Fate map of serotonin transporterâ€expressing cells in developing mouse heart. Genesis, 2007, 45, 689-695.	0.8	23
52	cAMP oscillations and retinal activity are permissive for ephrin signaling during the establishment of the retinotopic map. Nature Neuroscience, 2007, 10, 340-347.	7.1	151
53	Branching and nucleokinesis defects in migrating interneurons derived from doublecortin knockout mice. Human Molecular Genetics, 2006, 15, 1387-1400.	1.4	145
54	Role of the calcium modulated cyclases in the development of the retinal projections. European Journal of Neuroscience, 2006, 24, 3401-3414.	1.2	39

#	Article	IF	CITATIONS
55	Expression of Cux-1 and Cux-2 in the developing somatosensory cortex of normal and barrel-defective mice. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2006, 288A, 158-165.	2.0	47
56	Transitory uptake of serotonin in the developing sensory pathways of the common marmoset. Journal of Comparative Neurology, 2006, 499, 677-689.	0.9	34
57	Branching and nucleokinesis defects in migrating interneurons derived from doublecortin knockout mice. Human Molecular Genetics, 2006, 15, 2183-2183.	1.4	2
58	Requirement of Adenylate Cyclase 1 for the Ephrin-A5-Dependent Retraction of Exuberant Retinal Axons. Journal of Neuroscience, 2006, 26, 862-872.	1.7	63
59	Presynaptic Mechanisms Controlling Axon Terminal Remodeling in the Thalamocortical and Retinogeniculate Systems. , 2006, , 183-207.		3
60	Spatiotemporal localization of the calcium-stimulated adenylate cyclases, AC1 and AC8, during mouse brain development. Journal of Comparative Neurology, 2005, 486, 281-294.	0.9	38
61	Dissociating Barrel Development and Lesion-Induced Plasticity in the Mouse Somatosensory Cortex. Journal of Neuroscience, 2005, 25, 706-710.	1.7	52
62	Des modèles génétiques pour comprendre le rÃ1e de la sérotonine au cours du développement. Socié De Biologie Journal, 2004, 198, 18-21.)té 0.3	7
63	Localization of VGLUT3, the vesicular glutamate transporter type 3, in the rat brain. Neuroscience, 2004, 123, 983-1002.	1.1	225
64	Developmental expression pattern of monoamine oxidases in sensory organs and neural crest derivatives. Journal of Comparative Neurology, 2003, 464, 392-403.	0.9	34
65	The developmental role of serotonin: news from mouse molecular genetics. Nature Reviews Neuroscience, 2003, 4, 1002-1012.	4.9	1,130
66	Tetanus neurotoxin-insensitive vesicle-associated membrane protein localizes to a presynaptic membrane compartment in selected terminal subsets of the rat brain. Neuroscience, 2003, 122, 59-75.	1.1	48
67	Centrin4p, a Novel Mammalian Centrin Specifically Expressed in Ciliated Cells. Molecular Biology of the Cell, 2003, 14, 1818-1834.	0.9	65
68	Cross Talk between Tetanus Neurotoxin-insensitive Vesicle-associated Membrane Protein-mediated Transport and L1-mediated Adhesion. Molecular Biology of the Cell, 2003, 14, 4207-4220.	0.9	75
69	Adenylate Cyclase 1 as a Key Actor in the Refinement of Retinal Projection Maps. Journal of Neuroscience, 2003, 23, 2228-2238.	1.7	66
70	Lack of 5-HT1B receptor and of serotonin transporter have different effects on the segregation of retinal axons in the lateral geniculate nucleus compared to the superior colliculus. Neuroscience, 2002, 111, 597-610.	1.1	52
71	Effects of genetic depletion of monoamines on somatosensory cortical development. Neuroscience, 2002, 115, 753-764.	1.1	48
72	Interactions between TrkB Signaling and Serotonin Excess in the Developing Murine Somatosensory Cortex: A Role in Tangential and Radial Organization of Thalamocortical Axons. Journal of Neuroscience, 2002, 22, 4987-5000.	1.7	45

#	Article	IF	CITATIONS
73	Activity-Dependent Presynaptic Effect of Serotonin 1B Receptors on the Somatosensory Thalamocortical Transmission in Neonatal Mice. Journal of Neuroscience, 2002, 22, 886-900.	1.7	111
74	Refinement of Thalamocortical Arbors and Emergence of Barrel Domains in the Primary Somatosensory Cortex: A Study of Normal and Monoamine Oxidase A Knock-Out Mice. Journal of Neuroscience, 2002, 22, 8541-8552.	1.7	175
75	Changing distribution of monoaminergic markers in the developing human cerebral cortex with special emphasis on the serotonin transporter. The Anatomical Record, 2002, 267, 87-93.	2.3	97
76	Developmental expression of monoamine oxidases A and B in the central and peripheral nervous systems of the mouse. Journal of Comparative Neurology, 2002, 442, 331-347.	0.9	84
77	The "Orphan―Na+/ClDependent Transporter, Rxt1, Is Primarily Localized Within Nerve Endings of Cortical Origin in the Rat Striatum. Journal of Neurochemistry, 2002, 73, 623-632.	2.1	6
78	Excessive Activation of Serotonin (5-HT) 1B Receptors Disrupts the Formation of Sensory Maps in Monoamine Oxidase A and 5-HT Transporter Knock-Out Mice. Journal of Neuroscience, 2001, 21, 884-896.	1.7	258
79	Protracted expression of serotonin transporter and altered thalamocortical projections in the barrelfield of hypothyroid rats. European Journal of Neuroscience, 2001, 14, 1968-1980.	1.2	40
80	Abnormal trafficking and subcellular localization of an N-terminally truncated serotonin transporter protein. European Journal of Neuroscience, 2001, 13, 1349-1362.	1.2	32
81	Ontogeny of Rxt1, a vesicular "orphan―Na+/Clâ^'-dependent transporter, in the rat. Neuroscience, 2000, 96, 627-637.	1.1	3
82	Excess of Serotonin (5-HT) Alters the Segregation of Ispilateral and Contralateral Retinal Projections in Monoamine Oxidase A Knock-Out Mice: Possible Role of 5-HT Uptake in Retinal Ganglion Cells During Development. Journal of Neuroscience, 1999, 19, 7007-7024.	1.7	166
83	Serotonin receptor activation enhances neurite outgrowth of thalamic neurones in rodents. Neuroscience Letters, 1999, 269, 87-90.	1.0	92
84	Effects of monoamine oxidase A inhibition on barrel formation in the mouse somatosensory cortex: Determination of a sensitive developmental period. , 1998, 393, 169-184.		128
85	Transient developmental expression of monoamine transporters in the rodent forebrain. Journal of Comparative Neurology, 1998, 401, 506-524.	0.9	196
86	Subpopulations of cortical GABAergic interneurons differ by their expression of D1 and D2 dopamine receptor subtypes. Molecular Brain Research, 1998, 58, 231-236.	2.5	105
87	Plasma Membrane Transporters of Serotonin, Dopamine, and Norepinephrine Mediate Serotonin Accumulation in Atypical Locations in the Developing Brain of Monoamine Oxidase A Knock-Outs. Journal of Neuroscience, 1998, 18, 6914-6927.	1.7	158
88	Transient developmental expression of monoamine transporters in the rodent forebrain. Journal of Comparative Neurology, 1998, 401, 506-24.	0.9	101
89	Paranodin, a Glycoprotein of Neuronal Paranodal Membranes. Neuron, 1997, 19, 319-331.	3.8	231
90	Lack of Barrels in the Somatosensory Cortex of Monoamine Oxidase A–Deficient Mice: Role of a Serotonin Excess during the Critical Period. Neuron, 1996, 16, 297-307.	3.8	493

#	Article	IF	CITATIONS
91	Transient Uptake and Storage of Serotonin in Developing Thalamic Neurons. Neuron, 1996, 17, 823-835.	3.8	318
92	D1 and D2 Receptor Gene Expression in the Rat Frontal Cortex: Cellular Localization in Different Classes of Efferent Neurons. European Journal of Neuroscience, 1995, 7, 1050-1063.	1.2	305
93	Early postnatal changes of the dopaminergic mesencephalic neurons in the weaver mutant mouse. Developmental Brain Research, 1995, 89, 115-119.	2.1	38
94	Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science, 1995, 268, 1763-1766.	6.0	1,188
95	Sparing of the dopaminergic neurons containing Calbindin-D28k and of the dopaminergic mesocortical projections in weaver mutant mice. Neuroscience, 1994, 61, 293-305.	1.1	65
96	Serotonergic sprouting in primate MTP-induced hemiparkinsonism. Experimental Brain Research, 1993, 96, 100-106.	0.7	68
97	Calbindin D-28K in the dopaminergic mesocortical projection of a monkey (Aotus trivirgatus). Brain Research, 1993, 603, 166-172.	1.1	25
98	Colocalization of Neurotensin in the Mesocortical Dopaminergic System Annals of the New York Academy of Sciences, 1992, 668, 307-310.	1.8	15
99	Topography and collateralization of the dopaminergic projections to motor and lateral prefrontal cortex in owl monkeys. Journal of Comparative Neurology, 1992, 325, 1-21.	0.9	168
100	Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends in Neurosciences, 1991, 14, 21-27.	4.2	524
101	Further indication that distinct dopaminergic subsets project to the rat cerebral cortex: lack of colocalization with neurotensin in the superficial dopaminergic fields of the anterior cingulate, motor, retrosplenial and visual cortices. Brain Research, 1991, 547, 55-61.	1.1	51
102	Alterations of dopaminergic and noradrenergic innervations in motor cortex in parkinson's disease. Annals of Neurology, 1991, 30, 365-374.	2.8	224
103	Neurotensin innervation of the human cerebral cortex: lack of colocalization with catecholamines. Brain Research, 1990, 530, 181-195.	1.1	47
104	Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase. Journal of Comparative Neurology, 1989, 279, 249-271.	0.9	503
105	Chemoanatomic compartments in the human bed nucleus of the stria terminalis. Neuroscience, 1989, 32, 181-194.	1.1	50
106	Subpopulations of somatostatin 28-immunoreactive neurons display different vulnerability in senile dementia of the Alzheimer type. Brain Research, 1989, 490, 1-13.	1.1	74
107	Regional and laminar distribution of the dopamine and serotonin innervation in the macaque cerebral cortex: A radioautographic study. Journal of Comparative Neurology, 1988, 273, 99-119.	0.9	250
108	Transient tyrosine hydroxylase-like immunoreactive neurons contain somatostatin and substance P in the developing amygdala and bed nucleus of the stria terminalis of the rat. Developmental Brain Research, 1988, 42, 45-58.	2.1	69

#	Article	IF	CITATIONS
109	Somatostatin 28 and neuropeptide Y innervation in the septal area and related cortical and subcortical structures of the human brain. Distribution, relationships and evidence for differential coexistence. Neuroscience, 1987, 22, 49-73.	1.1	78
110	Tyrosine hydroxylase-immunoreactive neurons in the human cerebral cortex: a novel catecholaminergic group?. Neuroscience Letters, 1987, 80, 257-262.	1.0	115
111	Postnatal sequential development of dopaminergic and enkephalinergic perineuronal formations in the lateral septal nucleus of the rat correlated with local neuronal maturation. Anatomy and Embryology, 1987, 176, 463-475.	1.5	32
112	Major dopamine innervation of the cortical motor areas in the Cynomolgus monkey. A radioautographic study with comparative assessment of serotonergic afferents. Neuroscience Letters, 1986, 72, 121-127.	1.0	52
113	Catecholaminergic innervation of the septal area in man: Immunocytochemical study using TH and DBH antibodies. Journal of Comparative Neurology, 1985, 241, 12-33.	0.9	155
114	Transient expression of tyrosine hydroxylase immunoreactivity in some neurons of the rat neocortex during postnatal development. Developmental Brain Research, 1985, 23, 141-144.	2.1	148
115	Dementia in idiopathic Parkinson's disease. Acta Neuropathologica, 1984, 64, 43-52.	3.9	253
116	Biochemical neuropathology of Parkinson's disease. Advances in Neurology, 1984, 40, 189-98.	0.8	51
117	Tyrosine hydroxylase and methionine-enkephalin in the human mesencephalon. Journal of the Neurological Sciences, 1983, 58, 247-267.	0.3	87
118	Dopamine and methionine-enkephalin in human brain. Neuroscience Letters, 1982, 33, 191-196.	1.0	28
119	l-Histidine Decarboxylase in the Human Brain: Properties and Localization. Journal of Neurochemistry, 1980, 35, 400-406.	2.1	23
120	Regional Distribution of Neurotransmitter Synthesizing Enzymes in the Basal Ganglia of Human Brain. Journal of Neurochemistry, 1980, 34, 278-283.	2.1	48
121	POST MORTEM STABILITY AND STORAGE IN THE COLD OF BRAIN ENZYMES. Journal of Neurochemistry, 1979, 32, 449-454.	2.1	65
122	Midbrain Peptidergic Neurons Enable Maternal Nesting. SSRN Electronic Journal, 0, , .	0.4	0
123	Effet d'une lesion localisee de la retine sur le developpement des projections retino-geniculees. Frontiers in Neuroscience, 0, 3, .	1.4	0