Ajay Seth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9200391/publications.pdf

Version: 2024-02-01

361045 525886 4,129 29 20 27 h-index citations g-index papers 35 35 35 3093 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	OpenSense: An open-source toolbox for inertial-measurement-unit-based measurement of lower extremity kinematics over long durations. Journal of NeuroEngineering and Rehabilitation, 2022, 19, 22.	2.4	56
2	Conclusion or Illusion: Quantifying Uncertainty in Inverse Analyses From Marker-Based Motion Capture due to Errors in Marker Registration and Model Scaling. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	8
3	Muscle coordination retraining inspired by musculoskeletal simulations reduces knee contact force. Scientific Reports, 2022, 12, .	1.6	24
4	A marker registration method to improve joint angles computed by constrained inverse kinematics. PLoS ONE, 2021, 16, e0252425.	1.1	11
5	Biomechanics Aware Collaborative Robot System for Delivery of Safe Physical Therapy in Shoulder Rehabilitation. IEEE Robotics and Automation Letters, 2021, 6, 7177-7184.	3.3	17
6	Muscle Contributions to Upper-Extremity Movement and Work From a Musculoskeletal Model of the Human Shoulder. Frontiers in Neurorobotics, 2019, 13, 90.	1.6	38
7	OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS Computational Biology, 2018, 14, e1006223.	1.5	735
8	A Biomechanical Model of the Scapulothoracic Joint to Accurately Capture Scapular Kinematics during Shoulder Movements. PLoS ONE, 2016, 11, e0141028.	1.1	106
9	Rectus femoris transfer surgery affects balance recovery in children with cerebral palsy: A computer simulation study. Gait and Posture, 2016, 43, 24-30.	0.6	27
10	Simulating Ideal Assistive Devices to Reduce the Metabolic Cost of Running. PLoS ONE, 2016, 11, e0163417.	1.1	127
11	Is My Model Good Enough? Best Practices for Verification and Validation of Musculoskeletal Models and Simulations of Movement. Journal of Biomechanical Engineering, 2015, 137, 020905.	0.6	509
12	Are Subject-Specific Musculoskeletal Models Robust to the Uncertainties in Parameter Identification?. PLoS ONE, 2014, 9, e112625.	1.1	146
13	Muscle contributions to vertical and fore-aft accelerations are altered in subjects with crouch gait. Gait and Posture, 2013, 38, 86-91.	0.6	58
14	A rolling constraint reproduces ground reaction forces and moments in dynamic simulations of walking, running, and crouch gait. Journal of Biomechanics, 2013, 46, 1772-1776.	0.9	27
15	How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds. Journal of Experimental Biology, 2013, 216, 2150-60.	0.8	197
16	What is a Moment Arm? Calculating Muscle Effectiveness in Biomechanical Models Using Generalized Coordinates., 2013, 2013, .		60
17	Flexing Computational Muscle: Modeling and Simulation of Musculotendon Dynamics. Journal of Biomechanical Engineering, 2013, 135, 021005.	0.6	465
18	Contributions of muscles to mediolateral ground reaction force over a range of walking speeds. Journal of Biomechanics, 2012, 45, 2438-2443.	0.9	88

#	Article	lF	Citations
19	Simbody: multibody dynamics for biomedical research. Procedia IUTAM, 2011, 2, 241-261.	1.2	193
20	Simulation of human movement: applications using OpenSim. Procedia IUTAM, 2011, 2, 186-198.	1.2	59
21	OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange. Procedia IUTAM, 2011, 2, 212-232.	1.2	219
22	Minimal formulation of joint motion for biomechanisms. Nonlinear Dynamics, 2010, 62, 291-303.	2.7	57
23	Muscle contributions to support and progression during single-limb stance in crouch gait. Journal of Biomechanics, 2010, 43, 2099-2105.	0.9	170
24	Muscle contributions to propulsion and support during running. Journal of Biomechanics, 2010, 43, 2709-2716.	0.9	608
25	Crouch Gait Represents a Simplified Muscular Support Strategy During Single-Limb Stance Compared to Unimpaired Gait. , 2009, , .		O
26	A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement. Journal of Biomechanics, 2007, 40, 356-366.	0.9	97
27	A nonlinear tracking method of computing net joint torques for human movement. , 2004, 2004, 4633-6.		3
28	Multi-joint coordination of vertical arm movement. Applied Bionics and Biomechanics, 2003, 1, 45-56.	0.5	3
29	Multi-Joint Coordination of Vertical Arm Movement. Applied Bionics and Biomechanics, 2003, 1, 45-56.	0.5	5