List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9200106/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Educational Data Mining: A Review of the State of the Art. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2010, 40, 601-618.	3.3	1,232
2	KEEL: a software tool to assess evolutionary algorithms for data mining problems. Soft Computing, 2009, 13, 307-318.	2.1	1,165
3	Educational data mining: A survey from 1995 to 2005. Expert Systems With Applications, 2007, 33, 135-146.	4.4	952
4	Data mining in course management systems: Moodle case study and tutorial. Computers and Education, 2008, 51, 368-384.	5.1	704
5	Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2013, 3, 12-27.	4.6	515
6	A Survey on the Application of Genetic Programming to Classification. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2010, 40, 121-144.	3.3	435
7	Predicting students' final performance from participation in on-line discussion forums. Computers and Education, 2013, 68, 458-472.	5.1	404
8	A Tutorial on Multilabel Learning. ACM Computing Surveys, 2015, 47, 1-38.	16.1	363
9	Educational data mining and learning analytics: An updated survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2020, 10, e1355.	4.6	332
10	Web usage mining for predicting final marks of students that use Moodle courses. Computer Applications in Engineering Education, 2013, 21, 135-146.	2.2	198
11	Early dropout prediction using data mining: a case study with high school students. Expert Systems, 2016, 33, 107-124.	2.9	191
12	Impact of HbA1c Measurement on Hospital Readmission Rates: Analysis of 70,000 Clinical Database Patient Records. BioMed Research International, 2014, 2014, 1-11.	0.9	188
13	Scalable extensions of the ReliefF algorithm for weighting and selecting features on the multi-label learning context. Neurocomputing, 2015, 161, 168-182.	3.5	155
14	Predicting student failure at school using genetic programming and different data mining approaches with high dimensional and imbalanced data. Applied Intelligence, 2013, 38, 315-330.	3.3	152
15	Frequent itemset mining: A 25 years review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2019, 9, e1329.	4.6	138
16	Multiâ€label learning: a review of the state of the art and ongoing research. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2014, 4, 411-444.	4.6	130
17	Applying Web usage mining for personalizing hyperlinks in Web-based adaptive educational systems. Computers and Education, 2009, 53, 828-840.	5.1	126
18	JCLEC: a Java framework for evolutionary computation. Soft Computing, 2007, 12, 381-392.	2.1	120

#	Article	IF	CITATIONS
19	Knowledge Discovery with Genetic Programming for Providing Feedback to Courseware Authors. User Modeling and User-Adapted Interaction, 2004, 14, 425-464.	2.9	119
20	An architecture for making recommendations to courseware authors using association rule mining and collaborative filtering. User Modeling and User-Adapted Interaction, 2009, 19, 99-132.	2.9	115
21	Review of ensembles of multi-label classifiers: Models, experimental study and prospects. Information Fusion, 2018, 44, 33-45.	11.7	108
22	Multi-target support vector regression via correlation regressor chains. Information Sciences, 2017, 415-416, 53-69.	4.0	106
23	A collaborative educational association rule mining tool. Internet and Higher Education, 2011, 14, 77-88.	4.2	95
24	Weighted Data Gravitation Classification for Standard and Imbalanced Data. IEEE Transactions on Cybernetics, 2013, 43, 1672-1687.	6.2	90
25	Distributed multi-label feature selection using individual mutual information measures. Knowledge-Based Systems, 2020, 188, 105052.	4.0	85
26	Predicting School Failure and Dropout by Using Data Mining Techniques. Revista Iberoamericana De Tecnologias Del Aprendizaje, 2013, 8, 7-14.	0.7	82
27	Evolutionary algorithms for subgroup discovery in e-learning: A practical application using Moodle data. Expert Systems With Applications, 2009, 36, 1632-1644.	4.4	80
28	Educational data science in massive open online courses. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2017, 7, e1187.	4.6	74
29	Artificial Neural Networks for Estimation of Kinetic Analytical Parameters. Analytical Chemistry, 1995, 67, 1521-1525.	3.2	71
30	Dysregulation of the splicing machinery is directly associated to aggressiveness of prostate cancer. EBioMedicine, 2020, 51, 102547.	2.7	71
31	Design and behavior study of a grammar-guided genetic programming algorithm for mining association rules. Knowledge and Information Systems, 2012, 32, 53-76.	2.1	67
32	A survey of many-objective optimisation in search-based software engineering. Journal of Systems and Software, 2019, 149, 382-395.	3.3	65
33	An interpretable classification rule mining algorithm. Information Sciences, 2013, 240, 1-20.	4.0	63
34	Association rule mining using genetic programming to provide feedback to instructors from multipleâ€choice quiz data. Expert Systems, 2013, 30, 162-172.	2.9	58
35	Using mobile and webâ€based computerized tests to evaluate university students. Computer Applications in Engineering Education, 2009, 17, 435-447.	2.2	56
36	Performing Multi-Target Regression via a Parameter Sharing-Based Deep Network. International Journal of Neural Systems, 2019, 29, 1950014.	3.2	55

#	Article	IF	CITATIONS
37	Apriori Versions Based on MapReduce for Mining Frequent Patterns on Big Data. IEEE Transactions on Cybernetics, 2018, 48, 2851-2865.	6.2	54
38	Splicing machinery dysregulation drives glioblastoma development/aggressiveness: oncogenic role of SRSF3. Brain, 2020, 143, 3273-3293.	3.7	54
39	An evolutionary algorithm for the discovery of rare class association rules in learning management systems. Applied Intelligence, 2015, 42, 501-513.	3.3	53
40	Virtual learning environment to predict withdrawal by leveraging deep learning. International Journal of Intelligent Systems, 2019, 34, 1935-1952.	3.3	53
41	Pattern Mining with Evolutionary Algorithms. , 2016, , .		52
42	Dysregulation of the Splicing Machinery Is Associated to the Development of Nonalcoholic Fatty Liver Disease. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 3389-3402.	1.8	52
43	Multiple instance learning for classifying students in learning management systems. Expert Systems With Applications, 2011, 38, 15020-15031.	4.4	48
44	A Survey on Pre-Processing Educational Data. Studies in Computational Intelligence, 2014, , 29-64.	0.7	48
45	Effective active learning strategy for multi-label learning. Neurocomputing, 2018, 273, 494-508.	3.5	46
46	Predicting literature's early impact with sentiment analysis in Twitter. Knowledge-Based Systems, 2020, 192, 105383.	4.0	46
47	Multicomponent Kinetic Determinations Using Artificial Neural Networks. Analytical Chemistry, 1995, 67, 4458-4461.	3.2	45
48	Reducing gaps in quantitative association rules: A genetic programming free-parameter algorithm. Integrated Computer-Aided Engineering, 2014, 21, 321-337.	2.5	44
49	Convolutional neural networks for the automatic diagnosis of melanoma: An extensive experimental study. Medical Image Analysis, 2021, 67, 101858.	7.0	44
50	High performance evaluation of evolutionary-mined association rules on GPUs. Journal of Supercomputing, 2013, 66, 1438-1461.	2.4	43
51	Personalized Links Recommendation Based on Data Mining in Adaptive Educational Hypermedia Systems. Lecture Notes in Computer Science, 2007, , 292-306.	1.0	41
52	Multiple Instance Learning. , 2016, , .		41
53	Statistical comparisons of active learning strategies over multiple datasets. Knowledge-Based Systems, 2018, 145, 274-288.	4.0	41
54	On the Use of Genetic Programming for Mining Comprehensible Rules in Subgroup Discovery. IEEE Transactions on Cybernetics, 2014, 44, 2329-2341.	6.2	40

#	Article	IF	CITATIONS
55	ur-CAIM: improved CAIM discretization for unbalanced and balanced data. Soft Computing, 2016, 20, 173-188.	2.1	40
56	Speeding up the evaluation phase of GP classification algorithms on GPUs. Soft Computing, 2012, 16, 187-202.	2.1	38
57	Evolutionary feature weighting to improve the performance of multi-label lazy algorithms. Integrated Computer-Aided Engineering, 2014, 21, 339-354.	2.5	38
58	Multi-objective genetic programming for feature extraction and data visualization. Soft Computing, 2017, 21, 2069-2089.	2.1	37
59	LAIM discretization for multi-label data. Information Sciences, 2016, 330, 370-384.	4.0	35
60	Mining association rules on Big Data through MapReduce genetic programming. Integrated Computer-Aided Engineering, 2017, 25, 31-48.	2.5	35
61	Distributed nearest neighbor classification for large-scale multi-label data on spark. Future Generation Computer Systems, 2018, 87, 66-82.	4.9	35
62	Discovering Prediction Rules in AHA! Courses. Lecture Notes in Computer Science, 2003, , 25-34.	1.0	35
63	Speeding-Up Association Rule Mining With Inverted Index Compression. IEEE Transactions on Cybernetics, 2016, 46, 3059-3072.	6.2	33
64	Web-based adaptive training simulator system for cardiac life support. Artificial Intelligence in Medicine, 2006, 38, 67-78.	3.8	32
65	Using Ant Programming Guided by Grammar for Building Rule-Based Classifiers. IEEE Transactions on Systems, Man, and Cybernetics, 2011, 41, 1585-1599.	5.5	29
66	Multi-instance genetic programming for predicting student performance in web based educational environments. Applied Soft Computing Journal, 2012, 12, 2693-2706.	4.1	29
67	Mining Context-Aware Association Rules Using Grammar-Based Genetic Programming. IEEE Transactions on Cybernetics, 2018, 48, 3030-3044.	6.2	29
68	Evolutionary Strategy to Perform Batch-Mode Active Learning on Multi-Label Data. ACM Transactions on Intelligent Systems and Technology, 2018, 9, 1-26.	2.9	29
69	Changes in Splicing Machinery Components Influence, Precede, and Early Predict the Development of Type 2 Diabetes: From the CORDIOPREV Study. EBioMedicine, 2018, 37, 356-365.	2.7	29
70	ReliefF-MI: An extension of ReliefF to multiple instance learning. Neurocomputing, 2012, 75, 210-218.	3.5	28
71	Grammar-based multi-objective algorithms for mining association rules. Data and Knowledge Engineering, 2013, 86, 19-37.	2.1	28
72	On the adaptability of G3PARM to the extraction of rare association rules. Knowledge and Information Systems, 2014, 38, 391-418.	2.1	28

#	Article	IF	CITATIONS
73	Mining local periodic patterns in a discrete sequence. Information Sciences, 2021, 544, 519-548.	4.0	28
74	G3P-MI: A genetic programming algorithm for multiple instance learning. Information Sciences, 2010, 180, 4496-4513.	4.0	27
75	Supervised Descriptive Pattern Mining. , 2018, , .		26
76	An advanced review on text mining in medicine. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2019, 9, e1302.	4.6	25
77	Dysregulated splicing factor SF3B1 unveils a dual therapeutic vulnerability to target pancreatic cancer cells and cancer stem cells with an anti-splicing drug. Journal of Experimental and Clinical Cancer Research, 2021, 40, 382.	3.5	25
78	Computational Neural Networks in Conjunction with Principal Component Analysis for Resolving Highly Nonlinear Kinetics. Journal of Chemical Information and Computer Sciences, 1997, 37, 287-291.	2.8	24
79	Multi-instance genetic programming for web index recommendation. Expert Systems With Applications, 2009, 36, 11470-11479.	4.4	24
80	Mining association rules with single and multi-objective grammar guided ant programming. Integrated Computer-Aided Engineering, 2013, 20, 217-234.	2.5	24
81	Games and simulation in higher education. International Journal of Educational Technology in Higher Education, 2017, 14, .	4.5	24
82	MIRSVM: Multi-instance support vector machine with bag representatives. Pattern Recognition, 2018, 79, 228-241.	5.1	24
83	RM-Tool: A framework for discovering and evaluating association rules. Advances in Engineering Software, 2011, 42, 566-576.	1.8	23
84	Multiple Instance Learning with Multiple Objective Genetic Programming for Web Mining. Applied Soft Computing Journal, 2011, 11, 93-102.	4.1	22
85	Parallel multi-objective Ant Programming for classification using GPUs. Journal of Parallel and Distributed Computing, 2013, 73, 713-728.	2.7	22
86	Interactive multi-objective evolutionary optimization of software architectures. Information Sciences, 2018, 463-464, 92-109.	4.0	22
87	Stopped-flow chemiluminescence spectrometry to improve the determination of pencillins based on the luminol-iodine reaction. Analytica Chimica Acta, 1992, 266, 301-307.	2.6	21
88	Effective lazy learning algorithm based on a data gravitation model for multi-label learning. Information Sciences, 2016, 340-341, 159-174.	4.0	21
89	Extremely high-dimensional optimization with MapReduce: Scaling functions and algorithm. Information Sciences, 2017, 415-416, 110-127.	4.0	21
90	Evaluation and comparison of open source software suites for data mining and knowledge discovery. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2017, 7, e1204.	4.6	21

#	Article	IF	CITATIONS
91	Speeding up multiple instance learning classification rules on GPUs. Knowledge and Information Systems, 2015, 44, 127-145.	2.1	20
92	MLDA: A tool for analyzing multi-label datasets. Knowledge-Based Systems, 2017, 121, 1-3.	4.0	20
93	Guest Editorial: Special Issue on Early Prediction and Supporting of Learning Performance. IEEE Transactions on Learning Technologies, 2019, 12, 145-147.	2.2	20
94	HyDR-MI: A hybrid algorithm to reduce dimensionality in multiple instance learning. Information Sciences, 2013, 222, 282-301.	4.0	19
95	Signal speech reconstruction and noise removal using convolutional denoising audioencoders with neural deep learning. Analog Integrated Circuits and Signal Processing, 2019, 100, 501-512.	0.9	19
96	Optimization of quality measures in association rule mining: an empirical study. International Journal of Computational Intelligence Systems, 2018, 12, 59.	1.6	19
97	Computational Neural Networks for Resolving Nonlinear Multicomponent Systems Based on Chemiluminescence Methods. Journal of Chemical Information and Computer Sciences, 1998, 38, 1119-1124.	2.8	18
98	OLLAWV: OnLine Learning Algorithm using Worst-Violators. Applied Soft Computing Journal, 2018, 66, 384-393.	4.1	18
99	A Grammar-Guided Genetic Programing Algorithm for Associative Classification in Big Data. Cognitive Computation, 2019, 11, 331-346.	3.6	18
100	An evolutionary approach to build ensembles of multi-label classifiers. Information Fusion, 2019, 50, 168-180.	11.7	18
101	Classification rule mining using ant programming guided by grammar with multiple Pareto fronts. Soft Computing, 2012, 16, 2143-2163.	2.1	17
102	Parallel evaluation of Pittsburgh rule-based classifiers on GPUs. Neurocomputing, 2014, 126, 45-57.	3.5	17
103	Recommending degree studies according to students' attitudes in high school by means of subgroup discovery. International Journal of Computational Intelligence Systems, 2016, 9, 1101.	1.6	17
104	Estimation of Parameters of Kinetic Compartmental Models by Use of Computational Neural Networks. Journal of Chemical Information and Computer Sciences, 1997, 37, 517-521.	2.8	16
105	Mining exceptional relationships with grammar-guided genetic programming. Knowledge and Information Systems, 2016, 47, 571-594.	2.1	16
106	A comparative study of many-objective evolutionary algorithms for the discovery of software architectures. Empirical Software Engineering, 2016, 21, 2546-2600.	3.0	16
107	Genetic Programming for Mining Association Rules in Relational Database Environments. , 2015, , 431-450.		16

#	Article	IF	CITATIONS
109	Evolutionary algorithms for subgroup discovery applied to e-learning data. , 2010, , .		15
110	An approach for the evolutionary discovery of software architectures. Information Sciences, 2015, 305, 234-255.	4.0	15
111	Distributed Selection of Continuous Features in Multilabel Classification Using Mutual Information. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31, 1-14.	7.2	15
112	Tweet Coupling: a social media methodology for clustering scientific publications. Scientometrics, 2020, 124, 973-991.	1.6	15
113	Heuristics for interesting class association rule mining a colorectal cancer database. Information Processing and Management, 2020, 57, 102207.	5.4	15
114	Using Rules Discovery for the Continuous Improvement of e-Learning Courses. Lecture Notes in Computer Science, 2006, , 887-895.	1.0	15
115	LAC: Library for associative classification. Knowledge-Based Systems, 2020, 193, 105432.	4.0	14
116	A locally weighted learning method based on a data gravitation model for multi-target regression. International Journal of Computational Intelligence Systems, 2018, 11, 282.	1.6	14
117	Discovering useful patterns from multiple instance data. Information Sciences, 2016, 357, 23-38.	4.0	13
118	An evolutionary algorithm for optimizing the target ordering in Ensemble of Regressor Chains. , 2017, , .		13
119	Melanoma Recognition by Fusing Convolutional Blocks and Dynamic Routing between Capsules. Cancers, 2021, 13, 4974.	1.7	13
120	Association rule mining using a multi-objective grammar-based ant programming algorithm. , 2011, , .		12
121	GPU-parallel subtree interpreter for genetic programming. , 2014, , .		12
122	An ensemble-based convolutional neural network model powered by a genetic algorithm for melanoma diagnosis. Neural Computing and Applications, 2022, 34, 10429-10448.	3.2	12
123	Swarmâ€based metaheuristics in automatic programming: a survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2014, 4, 445-469.	4.6	11
124	Exhaustive search algorithms to mine subgroups on Big Data using Apache Spark. Progress in Artificial Intelligence, 2017, 6, 145-158.	1.5	11
125	Evaluating associative classification algorithms for Big Data. Big Data Analytics, 2019, 4, .	2.2	11
126	Combining multi-label classifiers based on projections of the output space using Evolutionary algorithms. Knowledge-Based Systems, 2020, 196, 105770.	4.0	11

#	Article	IF	CITATIONS
127	DRAL: a tool for discovering relevant e-activities for learners. Knowledge and Information Systems, 2013, 36, 211-250.	2.1	10
128	A Data Structure to Speed-Up Machine Learning Algorithms on Massive Datasets. Lecture Notes in Computer Science, 2016, , 365-376.	1.0	10
129	Data mining in predictive maintenance systems: A taxonomy and systematic review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2022, 12, .	4.6	10
130	Subgroup discovery in an e-learning usage study based on Moodle. , 2011, , .		9
131	On the performance of multiple objective evolutionary algorithms for software architecture discovery. , 2014, , .		9
132	Subgroup discovery in MOOCs: a big data application for describing different types of learners. Interactive Learning Environments, 2019, , 1-19.	4.4	9
133	Performing multi-target regression via gene expression programming-based ensemble models. Neurocomputing, 2021, 432, 275-287.	3.5	9
134	Evolving Multi-label Classification Rules with Gene Expression Programming: A Preliminary Study. Lecture Notes in Computer Science, 2010, , 9-16.	1.0	9
135	Solving Classification Problems Using Genetic Programming Algorithms on GPUs. Lecture Notes in Computer Science, 2010, , 17-26.	1.0	9
136	G3PARM: A Grammar Guided Genetic Programming algorithm for mining association rules. , 2010, , .		8
137	Scalable CAIM discretization on multiple GPUs using concurrent kernels. Journal of Supercomputing, 2014, 69, 273-292.	2.4	8
138	An ensemble-based method for the selection of instances in the multi-target regression problem. Integrated Computer-Aided Engineering, 2018, 25, 305-320.	2.5	8
139	LEAC: An efficient library for clustering with evolutionary algorithms. Knowledge-Based Systems, 2019, 179, 117-119.	4.0	8
140	JCLEC-MO: A Java suite for solving many-objective optimization engineering problems. Engineering Applications of Artificial Intelligence, 2019, 81, 14-28.	4.3	8
141	A supervised machine learning-based methodology for analyzing dysregulation in splicing machinery: An application in cancer diagnosis. Artificial Intelligence in Medicine, 2020, 108, 101950.	3.8	8
142	Multi-label Classification with Gene Expression Programming. Lecture Notes in Computer Science, 2009, , 629-637.	1.0	8
143	Discovering Subgroups by Means of Genetic Programming. Lecture Notes in Computer Science, 2013, , 121-132.	1.0	8
144	A grammar based Ant Programming algorithm for mining classification rules. , 2010, , .		7

9

#	Article	IF	CITATIONS
145	An EP algorithm for learning highly interpretable classifiers. , 2011, , .		7
146	Preface to the special issue on data mining for personalised educational systems. User Modeling and User-Adapted Interaction, 2011, 21, 1-3.	2.9	7
147	Improving Meta-learning for Algorithm Selection by Using Multi-label Classification: A Case of Study with Educational Data Sets. International Journal of Computational Intelligence Systems, 2015, 8, 1144.	1.6	7
148	An algorithm evaluation for discovering classification rules with gene expression programming. International Journal of Computational Intelligence Systems, 2016, 9, 263.	1.6	7
149	An evolutionary algorithm for mining rare association rules: A Big Data approach. , 2017, , .		7
150	Auto-adaptive Grammar-Guided Genetic Programming algorithm to build Ensembles of Multi-Label Classifiers. Information Fusion, 2022, 78, 1-19.	11.7	7
151	Modeling and predicting students' engagement behaviors using mixture Markov models. Knowledge and Information Systems, 2022, 64, 1349-1384.	2.1	7
152	Discovering clues to avoid middle school failure at early stages. , 2015, , .		6
153	J. A. Larusson, B. White (eds): Learning Analytics: From Research to Practice. Technology, Knowledge and Learning, 2015, 20, 357-360.	3.1	6
154	An ensemble-based approach for multi-view multi-label classification. Progress in Artificial Intelligence, 2016, 5, 251-259.	1.5	6
155	Large-Scale Multi-label Ensemble Learning on Spark. , 2017, , .		6
156	A Parallel Genetic Programming Algorithm for Classification. Lecture Notes in Computer Science, 2011, , 172-181.	1.0	6
157	Multiple Instance Learning with Genetic Programming for Web Mining. , 2007, , 919-927.		5
158	An Extensible JCLEC-based Solution for the Implementation of Multi-Objective Evolutionary Algorithms. , 2015, , .		5
159	Subgroup Discovery on Big Data: Exhaustive Methodologies Using Map-Reduce. , 2016, , .		5
160	Extracting User-Centric Knowledge on Two Different Spaces: Concepts and Records. IEEE Access, 2020, 8, 134782-134799.	2.6	5
161	Improving the understanding of cancer in a descriptive way: An emerging pattern miningâ€based approach. International Journal of Intelligent Systems, 2022, 37, 2822-2848.	3.3	5
162	Multi-objective Genetic Programming for Multiple Instance Learning. Lecture Notes in Computer Science, 2007, , 790-797.	1.0	5

#	Article	IF	CITATIONS
163	Rule mining with GBGP to improve web-based adaptive educational systems. WIT Transactions on State-of-the-art in Science and Engineering, 2006, , 173-189.	0.0	5
164	Multi-view Genetic Programming Learning to Obtain Interpretable Rule-Based Classifiers for Semi-supervised Contexts. Lessons Learnt. International Journal of Computational Intelligence Systems, 2020, 13, 576.	1.6	5
165	Course Recommendation based on Sequences: An Evolutionary Search of Emerging Sequential Patterns. Cognitive Computation, 2022, 14, 1474-1495.	3.6	5
166	Feature selection is the ReliefF for multiple instance learning. , 2010, , .		4
167	Multi-objective approach based on grammar-guided genetic programming for solving multiple instance problems. Soft Computing, 2012, 16, 955-977.	2.1	4
168	Parallelization strategies for markerless human motion capture. Journal of Real-Time Image Processing, 2018, 14, 453-467.	2.2	4
169	Classification Rule Mining with Iterated Greedy. Lecture Notes in Computer Science, 2014, , 585-596.	1.0	4
170	Multi-Objective Ant Programming for Mining Classification Rules. Lecture Notes in Computer Science, 2012, , 146-157.	1.0	4
171	A Niching Algorithm to Learn Discriminant Functions with Multi-Label Patterns. Lecture Notes in Computer Science, 2009, , 570-577.	1.0	4
172	Reducing Dimensionality in Multiple Instance Learning with a Filter Method. Lecture Notes in Computer Science, 2010, , 35-44.	1.0	4
173	Speeding Up Classifier Chains in Multi-label Classification. , 2019, , .		4
174	Peer assessment using soft computing techniques. Journal of Computing in Higher Education, 2021, 33, 684-726.	3.9	4
175	An intruder detection approach based on infrequent rating pattern mining. , 2010, , .		3
176	Learning similarity metric to improve the performance of lazy multi-label ranking algorithms. , 2012, , .		3
177	Multi-instance Regression. , 2016, , 127-140.		3
178	A Grammar-Guided Genetic Programming Algorithm for Multi-Label Classification. Lecture Notes in Computer Science, 2013, , 217-228.	1.0	3
179	Pattern Mining with Genetic Algorithms. , 2016, , 63-85.		3
180	Mining Perfectly Rare Itemsets on Big Data: An Approach Based on Apriori-Inverse and MapReduce. Advances in Intelligent Systems and Computing, 2017, , 508-518.	0.5	3

#	Article	IF	CITATIONS
181	Multiple Instance Learning with MultiObjective Genetic Programming for Web Mining. , 2008, , .		2
182	Binary and multiclass imbalanced classification using multi-objective ant programming. , 2012, , .		2
183	A novel component identification approach using evolutionary programming. , 2013, , .		2
184	Single and multi-objective ant programming for mining interesting rare association rules. International Journal of Hybrid Intelligent Systems, 2014, 11, 197-209.	0.9	2
185	Subgroup discovery on big data: Pruning the search space on exhaustive search algorithms. , 2016, , .		2
186	Multi-view semi-supervised learning using genetic programming interpretable classification rules. , 2017, , .		2
187	A gene expression programming method for multi-target regression. , 2018, , .		2
188	Introduction to Supervised Descriptive Pattern Mining. , 2018, , 1-31.		2
189	Discovering Studentsâ \in M Engagement Behaviors in Confidence-based Assessment. , 2019, , .		2
190	Tree-Shaped Ensemble of Multi-Label Classifiers using Grammar-Guided Genetic Programming. , 2020, , .		2
191	Classification Accuracy of Hepatitis C Virus Infection Outcome: Data Mining Approach. Journal of Medical Internet Research, 2021, 23, e18766.	2.1	2
192	CRBA: A Competitive Rate-Based Algorithm Based on Competitive Spiking Neural Networks. Frontiers in Computational Neuroscience, 2021, 15, 627567.	1.2	2
193	A propositionalization method of multi-relational data based on Grammar-Guided Genetic Programming. Expert Systems With Applications, 2021, 168, 114263.	4.4	2
194	Fast Convergence of Competitive Spiking Neural Networks with Sample-Based Weight Initialization. Communications in Computer and Information Science, 2020, , 773-786.	0.4	2
195	An Automatic Programming ACO-Based Algorithm for Classification Rule Mining. Advances in Intelligent and Soft Computing, 2010, , 649-656.	0.2	2
196	A gene expression programming algorithm for discovering classification rules in the multi-objective space. International Journal of Computational Intelligence Systems, 2018, 11, 540.	1.6	2
197	Subgroup Discovery on Multiple Instance Data. International Journal of Computational Intelligence Systems, 0, , .	1.6	2
198	Analysis of the Effectiveness of G3PARM Algorithm. Lecture Notes in Computer Science, 2010, , 27-34.	1.0	2

#	Article	IF	CITATIONS
199	Genetic Programming in Pattern Mining. , 2016, , 87-117.		2
200	Mining and representing rare association rules through the use of genetic programming. , 2011, , .		1
201	A genetic programming free-parameter algorithm for mining association rules. , 2012, , .		1
202	VisualJCLEC: A visual framework for evolutionary computation. , 2012, , .		1
203	On the use of ant programming for mining rare association rules. , 2013, , .		1
204	Quality Measures in Pattern Mining. , 2016, , 27-44.		1
205	Supervised Local Pattern Mining. , 2016, , 141-161.		1
206	Scalability in Pattern Mining. , 2016, , 177-190.		1
207	Multiobjective Approaches in Pattern Mining. , 2016, , 119-139.		1
208	Contrast Sets. , 2018, , 33-51.		1
209	WordificationMI: multi-relational data mining through multiple-instance propositionalization. Progress in Artificial Intelligence, 2019, 8, 375-387.	1.5	1
210	Exceptional in so Many Ways—Discovering Descriptors That Display Exceptional Behavior on Contrasting Scenarios. IEEE Access, 2020, 8, 200982-200994.	2.6	1
211	Unsupervised Multiple Instance Learning. , 2016, , 141-167.		1
212	Memetic Algorithms for the Automatic Discovery of Software Architectures. Advances in Intelligent Systems and Computing, 2017, , 437-447.	0.5	1
213	Ant Programming Algorithms for Classification. Advances in Data Mining and Database Management Book Series, 2014, , 107-128.	0.4	1
214	Web Usage Mining for Improving Students Performance in Learning Management Systems. Lecture Notes in Computer Science, 2010, , 439-449.	1.0	1
215	Synthesis of In-Place Iterative Sorting Algorithms Using GP: A Comparison Between STGP, SFGP, G3P and GE. Lecture Notes in Computer Science, 2015, , 305-310.	1.0	1
216	Grammar guided genetic programming for multiple instance learning. , 2010, , .		0

#	Article	IF	CITATIONS
217	Multi-instance Classification. , 2016, , 35-66.		Ο
218	Introduction to Pattern Mining. , 2016, , 1-26.		0
219	Mining Exceptional Relationships Between Patterns. , 2016, , 163-176.		0
220	Introduction to Evolutionary Computation. , 2016, , 45-61.		0
221	On the effect of local search in the multi-objective evolutionary discovery of software architectures. , 2017, , .		0
222	Class Association Rules. , 2018, , 99-128.		0
223	Obtaining Tractable and Interpretable Descriptions for Cases with Complications from a Colorectal Cancer Database. , 2019, , .		0
224	A Supervised Methodology for Analyzing Dysregulation in Splicing Machinery: An Application in Cancer Diagnosis. , 2019, , .		0
225	ARFF Data Source Library for Distributed Single/Multiple Instance, Single/Multiple Output Learning on Apache Spark. Lecture Notes in Computer Science, 2019, , 173-179.	1.0	0
226	A semantically enriched text mining system for clinical decision support. Computational Intelligence, 2021, 37, 1545-1570.	2.1	0
227	Design of peer assessment rubrics for ICT topics. Journal of Computing in Higher Education, 2022, 34, 211-241.	3.9	0
228	A Comparison of Multi-objective Grammar-Guided Genetic Programming Methods to Multiple Instance Learning. Lecture Notes in Computer Science, 2009, , 450-458.	1.0	0
229	JCLEC Meets WEKA!. Lecture Notes in Computer Science, 2011, , 388-395.	1.0	0
230	Data Reduction. , 2016, , 169-189.		0
231	Emerging Patterns. , 2018, , 53-70.		0
232	Subgroup Discovery. , 2018, , 71-98.		0
233	Successful Applications. , 2018, , 171-185.		0
234	Exceptional Models. , 2018, , 129-149.		0

#	Article	IF	CITATIONS
235	Associative Classification in Big Data through a G3P Approach. , 2019, , .		0