Claus Schneider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9199772/publications.pdf

Version: 2024-02-01

82 papers

4,286 citations

32 h-index 110387 64 g-index

88 all docs 88 docs citations

88 times ranked 5343 citing authors

#	Article	IF	CITATIONS
1	Curcumin Inhibition of $TGF\hat{l}^2$ signaling in bone metastatic breast cancer cells and the possible role of oxidative metabolites. Journal of Nutritional Biochemistry, 2022, 99, 108842.	4.2	6
2	Protective Role of Spermidine in Colitis and Colon Carcinogenesis. Gastroenterology, 2022, 162, 813-827.e8.	1.3	40
3	Identification of G protein-coupled receptor 55 (GPR55) as a target of curcumin. Npj Science of Food, 2022, 6, 4.	5.5	10
4	Curcumin activates G protein-coupled receptor 97 (GPR97) in a manner different from glucocorticoid. Biochemical and Biophysical Research Communications, 2022, 595, 41-46.	2.1	5
5	Cystathionine \hat{l}^3 -lyase exacerbates Helicobacter pylori immunopathogenesis by promoting macrophage metabolic remodeling and activation. JCI Insight, 2022, 7, .	5.0	8
6	Targeting Mammalian 5-Lipoxygenase by Dietary Phenolics as an Anti-Inflammatory Mechanism: A Systematic Review. International Journal of Molecular Sciences, 2021, 22, 7937.	4.1	24
7	Biosynthetic Crossover of 5-Lipoxygenase and Cyclooxygenase-2 Yields 5-Hydroxy-PGE ₂ and 5-Hydroxy-PGD ₂ . Jacs Au, 2021, 1, 1380-1388.	7.9	6
8	Perspective on Improving the Relevance, Rigor, and Reproducibility of Botanical Clinical Trials: Lessons Learned From Turmeric Trials. Frontiers in Nutrition, 2021, 8, 782912.	3.7	4
9	Curcumin Oxidation Is Required for Inhibition of Helicobacter pylori Growth, Translocation and Phosphorylation of Cag A. Frontiers in Cellular and Infection Microbiology, 2021, 11, 765842.	3.9	9
10	Transformation of Prostaglandin D2to 11â€Dehydro Thromboxane B2by Baeyerâ€Villiger Oxidation. Lipids, 2020, 55, 73-78.	1.7	1
11	Boneâ€Specific Metabolism of Dietary Polyphenols in Resorptive Bone Diseases. Molecular Nutrition and Food Research, 2020, 64, e2000072.	3.3	12
12	Spermine oxidase mediates Helicobacter pylori-induced gastric inflammation, DNA damage, and carcinogenic signaling. Oncogene, 2020, 39, 4465-4474.	5.9	46
13	Mechanistic Differences in the Inhibition of NF-κB by Turmeric and Its Curcuminoid Constituents. Journal of Agricultural and Food Chemistry, 2020, 68, 6154-6160.	5.2	19
14	A Simple and Rapid Method to Measure Food Intake in Fish Using Brine Shrimp. Zebrafish, 2020, 17, 229-232.	1.1	0
15	Incomplete Hydrolysis of Curcumin Conjugates by βâ€Glucuronidase: Detection of Complex Conjugates in Plasma. Molecular Nutrition and Food Research, 2020, 64, e1901037.	3.3	6
16	Inhibition of 5â€Lipoxygenaseâ€Derived Leukotrienes and Hemiketals as a Novel Antiâ€Inflammatory Mechanism of Urolithins. Molecular Nutrition and Food Research, 2020, 64, e2000129.	3.3	16
17	Residual cyclooxygenase activity of aspirinâ€acetylated COXâ€2 forms 15 <i>R</i> à€prostaglandins that inhibit platelet aggregation. FASEB Journal, 2019, 33, 1033-1041.	0.5	22
18	Curcumin induces secretion of glucagon-like peptide-1 through an oxidation-dependent mechanism. Biochimie, 2019, 165, 250-257.	2.6	11

#	Article	IF	CITATIONS
19	Dietary Arginine Regulates Severity of Experimental Colitis and Affects the Colonic Microbiome. Frontiers in Cellular and Infection Microbiology, 2019, 9, 66.	3.9	58
20	Beta-Glucuronidase Catalyzes Deconjugation and Activation of Curcumin-Glucuronide in Bone. Journal of Natural Products, 2019, 82, 500-509.	3.0	31
21	î±-Difluoromethylornithine reduces gastric carcinogenesis by causing mutations in <i>Helicobacter pylori cagY. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5077-5085.</i>	7.1	24
22	Bacterial Pathogens Hijack the Innate Immune Response by Activation of the Reverse Transsulfuration Pathway. MBio, 2019, 10 , .	4.1	20
23	Curcumin, but not curcumin-glucuronide, inhibits Smad signaling in $TGF\hat{l}^2$ -dependent bone metastatic breast cancer cells and is enriched in bone compared to other tissues. Journal of Nutritional Biochemistry, 2019, 63, 150-156.	4.2	37
24	Stability and anti-inflammatory activity of the reduction-resistant curcumin analog, 2,6-dimethyl-curcumin. Organic and Biomolecular Chemistry, 2018, 16, 3273-3281.	2.8	20
25	Structural and functional insights into S-thiolation of human serum albumins. Scientific Reports, 2018, 8, 932.	3.3	62
26	MNF's Upcoming Topics, Structure, and Standards in 2018. Molecular Nutrition and Food Research, 2018, 62, 1870014.	3.3	0
27	Thiol Reactivity of Curcumin and Its Oxidation Products. Chemical Research in Toxicology, 2018, 31, 269-276.	3.3	33
28	A Curcumin Degradation Product, 7-Norcyclopentadione, Formed by Aryl Migration and Loss of a Carbon from the Heptadienedione Chain. Journal of Natural Products, 2018, 81, 2756-2762.	3.0	3
29	Curcuminoid Content and Safetyâ€Related Markers of Quality of Turmeric Dietary Supplements Sold in an Urban Retail Marketplace in the United States. Molecular Nutrition and Food Research, 2018, 62, e1800143.	3.3	29
30	Ornithine Decarboxylase in Macrophages Exacerbates Colitis and Promotes Colitis-Associated Colon Carcinogenesis by Impairing M1 Immune Responses. Cancer Research, 2018, 78, 4303-4315.	0.9	55
31	Distinct Immunomodulatory Effects of Spermine Oxidase in Colitis Induced by Epithelial Injury or Infection. Frontiers in Immunology, 2018, 9, 1242.	4.8	35
32	Total Synthesis and Biological Activity of the Arachidonic Acid Metabolite Hemiketal E ₂ . Organic Letters, 2018, 20, 4020-4022.	4.6	13
33	Ornithine decarboxylase regulates M1 macrophage activation and mucosal inflammation via histone modifications. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E751-E760.	7.1	150
34	Roles of 5â€lipoxygenase and cyclooxygenaseâ€2 in the biosynthesis of hemiketals E ₂ and D ₂ by activated human leukocytes. FASEB Journal, 2017, 31, 1867-1878.	0.5	17
35	Kaempferol increases levels of coenzyme Q in kidney cells and serves as a biosynthetic ring precursor. Free Radical Biology and Medicine, 2017, 110, 176-187.	2.9	32
36	A fungal catalase reacts selectively with the 13S fatty acid hydroperoxide products of the adjacent lipoxygenase gene and exhibits 13S-hydroperoxide-dependent peroxidase activity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 706-715.	2.4	12

3

#	Article	IF	CITATIONS
37	Oxidative metabolism of curcumin-glucuronide by peroxidases and isolated human leukocytes. Biochemical Pharmacology, 2017, 132, 143-149.	4.4	23
38	The anti-inflammatory activity of curcumin is mediated by its oxidative metabolites. Journal of Biological Chemistry, 2017, 292, 21243-21252.	3.4	125
39	Biomimetic synthesis of hemiketal eicosanoids for biological testing. Prostaglandins and Other Lipid Mediators, 2017, 132, 41-46.	1.9	10
40	Degradation of Curcumin: From Mechanism to Biological Implications. Journal of Agricultural and Food Chemistry, 2015, 63, 7606-7614.	5.2	301
41	Unraveling Curcumin Degradation. Journal of Biological Chemistry, 2015, 290, 4817-4828.	3.4	129
42	Oxidative Transformation of Demethoxy- and Bisdemethoxycurcumin: Products, Mechanism of Formation, and Poisoning of Human Topoisomerase Ill±. Chemical Research in Toxicology, 2015, 28, 989-996.	3.3	66
43	Cyclooxygenase-2 catalysis and inhibition in lipid bilayer nanodiscs. Archives of Biochemistry and Biophysics, 2014, 546, 33-40.	3.0	21
44	Oxidative Metabolites of Curcumin Poison Human Type II Topoisomerases. Biochemistry, 2013, 52, 221-227.	2.5	61
45	Facile synthesis of deuterated and [14C]labeled analogs of vanillin and curcumin for use as mechanistic and analytical tools. Journal of Labelled Compounds and Radiopharmaceuticals, 2013, 56, 696-699.	1.0	20
46	COX-2-dependent and -independent biosynthesis of dihydroxy-arachidonic acids in activated human leukocytes. Journal of Lipid Research, 2012, 53, 87-94.	4.2	21
47	Vanillin and ferulic acid: not the major degradation products of curcumin. Trends in Molecular Medicine, 2012, 18, 361-363.	6.7	84
48	Cyclooxygenases and lipoxygenases in cancer. Cancer and Metastasis Reviews, 2011, 30, 277-294.	5.9	138
49	Biosynthesis of hemiketal eicosanoids by cross-over of the 5-lipoxygenase and cyclooxygenase-2 pathways. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6945-6950.	7.1	20
50	Autoxidative and Cyclooxygenase-2 Catalyzed Transformation of the Dietary Chemopreventive Agent Curcumin. Journal of Biological Chemistry, 2011, 286, 1114-1124.	3.4	123
51	Identification and absolute configuration of dihydroxy-arachidonic acids formed by oxygenation of 5S-HETE by native and aspirin-acetylated COX-2. Journal of Lipid Research, 2010, 51, 575-585.	4.2	23
52	Convergence of the 5-LOX and COX-2 pathways: heme-catalyzed cleavage of the 5S-HETE-derived di-endoperoxide into aldehyde fragments. Journal of Lipid Research, 2009, 50, 2455-2462.	4.2	32
53	An update on products and mechanisms of lipid peroxidation. Molecular Nutrition and Food Research, 2009, 53, 315-321.	3.3	81
54	Evidence for an Ionic Intermediate in the Transformation of Fatty Acid Hydroperoxide by a Catalase-related Allene Oxide Synthase from the Cyanobacterium Acaryochloris marina. Journal of Biological Chemistry, 2009, 284, 22087-22098.	3.4	39

#	Article	IF	CITATIONS
55	Routes to 4-Hydroxynonenal: Fundamental Issues in the Mechanisms of Lipid Peroxidation. Journal of Biological Chemistry, 2008, 283, 15539-15543.	3.4	228
56	Intermolecular Peroxyl Radical Reactions during Autoxidation of Hydroxy and Hydroperoxy Arachidonic Acids Generate a Novel Series of Epoxidized Products. Chemical Research in Toxicology, 2008, 21, 895-903.	3.3	50
57	A 49-kDa Mini-lipoxygenase from Anabaena sp. PCC 7120 Retains Catalytically Complete Functionality. Journal of Biological Chemistry, 2008, 283, 5138-5147.	3.4	50
58	Enantiomeric Separation of Hydroxy and Hydroperoxy Eicosanoids by Chiral Column Chromatography. Methods in Enzymology, 2007, 433, 145-157.	1.0	46
59	Enzymatic synthesis of a bicyclobutane fatty acid by a hemoprotein–lipoxygenase fusion protein from the cyanobacterium ⟨i⟩Anabaena⟨ i⟩ PCC 7120. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18941-18945.	7.1	56
60	Book News: Stress, Obesity, and Metabolic Syndrome. Edited by George P. Chrousos and Constantine Tsigos. Molecular Nutrition and Food Research, 2007, 51, 1554-1554.	3.3	0
61	Control of Oxygenation in Lipoxygenase and Cyclooxygenase Catalysis. Chemistry and Biology, 2007, 14, 473-488.	6.0	265
62	The hepoxilin connection in the epidermis. FEBS Journal, 2007, 274, 3494-3502.	4.7	65
63	Molecular Dynamics Simulations of Arachidonic Acid-Derived Pentadienyl Radical Intermediate Complexes with COX-1 and COX-2:  Insights into Oxygenation Regio- and Stereoselectivity. Biochemistry, 2006, 45, 3206-3218.	2.5	35
64	Convergent Oxygenation of Arachidonic Acid by 5-Lipoxygenase and Cyclooxygenase-2. Journal of the American Chemical Society, 2006, 128, 720-721.	13.7	33
65	Human cyclo-oxygenase-1 and an alternative splice variant: contrasts in expression of mRNA, protein and catalytic activities. Biochemical Journal, 2005, 385, 57-64.	3.7	26
66	Chemistry and biology of vitamin E. Molecular Nutrition and Food Research, 2005, 49, 7-30.	3.3	441
67	Synthesis of dihydroperoxides of linoleic and linolenic acids and studies on their transformation to 4-hydroperoxynonenal. Lipids, 2005, 40, 1155-1162.	1.7	51
68	Identification of Two Cyclooxygenase Active Site Residues, Leucine 384 and Glycine 526, That Control Carbon Ring Cyclization in Prostaglandin Biosynthesis. Journal of Biological Chemistry, 2004, 279, 4404-4414.	3.4	44
69	Upregulation of 8-Lipoxygenase in the Dermatitis of IκB-α-Deficient Mice. Journal of Investigative Dermatology, 2004, 122, 691-698.	0.7	19
70	Autoxidative Transformation of Chiral ω6 Hydroxy Linoleic and Arachidonic Acids to Chiral 4-Hydroxy-2E-nonenal. Chemical Research in Toxicology, 2004, 17, 937-941.	3.3	56
71	Control of Prostaglandin Stereochemistry at the 15-Carbon by Cyclooxygenases-1 and -2. Journal of Biological Chemistry, 2002, 277, 478-485.	3.4	70
72	Lipoxygenase-catalyzed formation of R-configuration hydroperoxides. Prostaglandins and Other Lipid Mediators, 2002, 68-69, 291-301.	1.9	26

#	Article	IF	CITATIONS
73	Detection of the 15-acetate of prostaglandin E2 methyl ester as a prominent component of the prostaglandins in the gorgonian coral Plexaura homomalla. Lipids, 2002, 37, 217-221.	1.7	11
74	Analysis of Cyclooxygenase-Substrate Interactions Using Stereospecificallylabeled Arachidonic Acids. Advances in Experimental Medicine and Biology, 2002, 507, 49-53.	1.6	1
75	Detection and Cellular Localization of 12R-Lipoxygenase in Human Tonsils. Archives of Biochemistry and Biophysics, 2001, 386, 268-274.	3.0	24
76	Two Distinct Pathways of Formation of 4-Hydroxynonenal. Journal of Biological Chemistry, 2001, 276, 20831-20838.	3.4	264
77	Enantiomeric Separation of Hydroxy Eicosanoids by Chiral Column Chromatography: Effect of the Alcohol Modifier. Analytical Biochemistry, 2000, 287, 186-189.	2.4	50
78	Spatial Requirements for 15-(R)-Hydroxy-5Z,8Z,11Z,13E-eicosatetraenoic Acid Synthesis within the Cyclooxygenase Active Site of Murine COX-2. Journal of Biological Chemistry, 2000, 275, 6586-6591.	3.4	75
79	Stereospecificity of Hydrogen Abstraction in the Conversion of Arachidonic Acid to 15R-HETE by Aspirin-treated Cyclooxygenase-2. Journal of Biological Chemistry, 2000, 275, 4743-4746.	3.4	68
80	2-[(4″-Hydroxy-3′-methoxy)-phenoxy]-4-(4″-hydroxy-3″-methoxy-phenyl)-8-hydroxy-6-oxo-3-oxabicylo[: unusual product of the soybean lipoxygenase-catalyzed oxygenation of curcumin. Journal of Molecular Catalysis B: Enzymatic, 1998, 4, 219-227.	3.3.0]-7-00 1.8	ctene: 18
81	Catalytic properties of allene oxide synthase from flaxseed (Linum usitatissimum L.). Lipids, 1998, 33, 191-196.	1.7	11
82	A Fatty Acid \hat{l} ±-Ketol, a Product of the Plant Lipoxygenase Pathway, Is Oxidized to 3(Z)- Dodecendioic Acid by a Bacterial Monooxygenase. Biochemical and Biophysical Research Communications, 1997, 232, 364-366.	2.1	8