
Mohd Rosli Mohd Hasan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/919975/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoclay-modified asphalt materials: Preparation and characterization. Construction and Building Materials, 2011, 25, 1072-1078.	7.2	349
2	Rheological Properties and Chemical Bonding of Asphalt Modified with Nanosilica. Journal of Materials in Civil Engineering, 2013, 25, 1619-1630.	2.9	278
3	Performance of Warm Mix Asphalt containing Sasobit®: State-of-the-art. Construction and Building Materials, 2013, 38, 530-553.	7.2	276
4	Chemical Characterization of Biobinder from Swine Manure: Sustainable Modifier for Asphalt Binder. Journal of Materials in Civil Engineering, 2011, 23, 1506-1513.	2.9	274
5	Rheological properties and chemical analysis of nanoclay and carbon microfiber modified asphalt with Fourier transform infrared spectroscopy. Construction and Building Materials, 2013, 38, 327-337.	7.2	212
6	The mechanical properties of asphalt mixtures with Recycled Concrete Aggregates. Construction and Building Materials, 2010, 24, 230-235.	7.2	201
7	Chemical characterization and oxidative aging of bio-asphalt and its compatibility with petroleum asphalt. Journal of Cleaner Production, 2017, 142, 1837-1847.	9.3	201
8	High temperature performance evaluation of bio-oil modified asphalt binders using the DSR and MSCR tests. Construction and Building Materials, 2015, 76, 380-387.	7.2	190
9	Mechanical performance of asphalt mixtures modified by bio-oils derived from waste wood resources. Construction and Building Materials, 2014, 51, 424-431.	7.2	176
10	Viscoelastic Model for Discrete Element Simulation of Asphalt Mixtures. Journal of Engineering Mechanics - ASCE, 2009, 135, 324-333.	2.9	172
11	Prediction of Creep Stiffness of Asphalt Mixture with Micromechanical Finite-Element and Discrete-Element Models. Journal of Engineering Mechanics - ASCE, 2007, 133, 163-173.	2.9	168
12	Effect of deicing solutions on the tensile strength of micro- or nano-modified asphalt mixture. Construction and Building Materials, 2011, 25, 195-200.	7.2	161
13	Three-Dimensional Discrete Element Models for Asphalt Mixtures. Journal of Engineering Mechanics - ASCE, 2008, 134, 1053-1063.	2.9	156
14	Dynamic modulus simulation of the asphalt concrete using the X-ray computed tomography images. Materials and Structures/Materiaux Et Constructions, 2009, 42, 617-630.	3.1	150
15	Performance of asphalt binder blended with non-modified and polymer-modified nanoclay. Construction and Building Materials, 2012, 35, 159-170.	7.2	143
16	Evaluation of Low-Temperature Binder Properties of Warm-Mix Asphalt, Extracted and Recovered RAP and RAS, and Bioasphalt. Journal of Materials in Civil Engineering, 2011, 23, 1569-1574.	2.9	142
17	Partial replacement of asphalt binder with bio-binder: characterisation and modification. International Journal of Pavement Engineering, 2012, 13, 515-522.	4.4	135
18	Visualization and Simulation of Asphalt Concrete with Randomly Generated Three-Dimensional Models. Journal of Computing in Civil Engineering, 2009, 23, 340-347.	4.7	130

#	Article	IF	CITATIONS
19	Aging Influence on Rheology Properties of Petroleum-Based Asphalt Modified with Biobinder. Journal of Materials in Civil Engineering, 2014, 26, 358-366.	2.9	126
20	Warm mix asphalt technology: An up to date review. Journal of Cleaner Production, 2020, 268, 122128.	9.3	120
21	Effectiveness of Vegetable Oils as Rejuvenators for Aged Asphalt Binders. Journal of Materials in Civil Engineering, 2017, 29, .	2.9	119
22	Emission analysis of recycled tire rubber modified asphalt in hot and warm mix conditions. Journal of Hazardous Materials, 2019, 365, 942-951.	12.4	119
23	Asphalt Binders Blended with a High Percentage of Biobinders: Aging Mechanism Using FTIR and Rheology. Journal of Materials in Civil Engineering, 2015, 27, .	2.9	117
24	Laboratory performance of warm mix asphalt containing recycled asphalt mixtures. Construction and Building Materials, 2014, 64, 141-149.	7.2	107
25	High temperature performance of SBS modified bio-asphalt. Construction and Building Materials, 2017, 144, 99-105.	7.2	107
26	High-temperature rheological behavior and fatigue performance of lignin modified asphalt binder. Construction and Building Materials, 2020, 230, 117063.	7.2	107
27	Modification mechanism of asphalt binder with waste tire rubber and recycled polyethylene. Construction and Building Materials, 2016, 126, 66-76.	7.2	105
28	Environmental and mechanical performance of crumb rubber modified warm mix asphalt using Evotherm. Journal of Cleaner Production, 2017, 159, 346-358.	9.3	99
29	Effect of warm mixture asphalt (WMA) additives on high failure temperature properties for crumb rubber modified (CRM) binders. Construction and Building Materials, 2012, 35, 281-288.	7.2	91
30	Investigation of induction healing effects on electrically conductive asphalt mastic and asphalt concrete beams through fracture-healing tests. Construction and Building Materials, 2013, 49, 729-737.	7.2	87
31	Mechanical Properties of Porous Asphalt Pavement Materials with Warm Mix Asphalt and RAP. Journal of Transportation Engineering, 2012, 138, 90-97.	0.9	86
32	Rheological properties, low-temperature cracking resistance, and optical performance of exfoliated graphite nanoplatelets modified asphalt binder. Construction and Building Materials, 2016, 113, 988-996.	7.2	85
33	Research on properties of bio-asphalt binders based on time and frequency sweep test. Construction and Building Materials, 2018, 160, 786-793.	7.2	75
34	Impacts of recycled crumb rubber powder and natural rubber latex on the modified asphalt rheological behaviour, bonding, and resistance to shear. Construction and Building Materials, 2020, 234, 117357.	7.2	72
35	Effects of coarse aggregate angularity on the microstructure of asphalt mixture. Construction and Building Materials, 2018, 183, 472-484.	7.2	70
36	Evaluation of the effect of bio-oil on the high-temperature performance of rubber modified asphalt. Construction and Building Materials, 2018, 191, 692-701.	7.2	69

#	Article	IF	CITATIONS
37	Investigation of microwave healing performance of electrically conductive carbon fiber modified asphalt mixture beams. Construction and Building Materials, 2016, 126, 1012-1019.	7.2	68
38	Discussion on molecular dynamics (MD) simulations of the asphalt materials. Advances in Colloid and Interface Science, 2022, 299, 102565.	14.7	63
39	A micromechanical finite element model for linear and damage-coupled viscoelastic behaviour of asphalt mixture. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30, 1135-1158.	3.3	60
40	A comprehensive review of theory, development, and implementation of warm mix asphalt using foaming techniques. Construction and Building Materials, 2017, 152, 115-133.	7.2	59
41	Evaluation of aggregate resistance to wear with Micro-Deval test in combination with aggregate imaging techniques. Wear, 2015, 338-339, 288-296.	3.1	57
42	A simple treatment of electronic-waste plastics to produce asphalt binder additives with improved properties. Construction and Building Materials, 2016, 110, 79-88.	7.2	57
43	Micromechanical finite element framework for predicting viscoelastic properties of asphalt mixtures. Materials and Structures/Materiaux Et Constructions, 2008, 41, 1025-1037.	3.1	56
44	Properties of Modified Asphalt Binders Blended with Electronic Waste Powders. Journal of Materials in Civil Engineering, 2012, 24, 1261-1267.	2.9	53
45	Characterization of the rate of change of rheological properties of nano-modified asphalt. Construction and Building Materials, 2015, 98, 437-446.	7.2	53
46	Characteristics of Water-Foamed Asphalt Mixture under Multiple Freeze-Thaw Cycles: Laboratory Evaluation. Journal of Materials in Civil Engineering, 2018, 30, .	2.9	53
47	Rheological Behavior and Sensitivity of Wood-Derived Bio-Oil Modified Asphalt Binders. Applied Sciences (Switzerland), 2018, 8, 919.	2.5	52
48	Characterising the asphalt concrete fracture performance from X-ray CT Imaging and finite element modelling. International Journal of Pavement Engineering, 2018, 19, 307-318.	4.4	51
49	3D discrete element models of the hollow cylindrical asphalt concrete specimens subject to the internal pressure. International Journal of Pavement Engineering, 2010, 11, 429-439.	4.4	50
50	New Predictive Equations for Dynamic Modulus and Phase Angle Using a Nonlinear Least-Squares Regression Model. Journal of Materials in Civil Engineering, 2015, 27, .	2.9	48
51	Preparation process of bio-oil and bio-asphalt, their performance, and the application of bio-asphalt: A comprehensive review. Journal of Traffic and Transportation Engineering (English Edition), 2020, 7, 137-151.	4.2	48
52	Permeability loss in porous asphalt due to binder creep. Construction and Building Materials, 2012, 30, 10-15.	7.2	46
53	Investigation of adhesion and interface bond strength for pavements underlying chip-seal: Effect of asphalt-aggregate combinations and freeze-thaw cycles on chip-seal. Construction and Building Materials, 2019, 203, 322-330.	7.2	45
54	Exploring the Interactions of Chloride Deicer Solutions with Nanomodified and Micromodified Asphalt Mixtures Using Artificial Neural Networks. Journal of Materials in Civil Engineering, 2012, 24, 805-815.	2.9	43

#	Article	IF	CITATIONS
55	Laboratory moisture susceptibility evaluation of WMA under possible field conditions. Construction and Building Materials, 2015, 101, 57-64.	7.2	43
56	Innovation of aggregate angularity characterization using gradient approach based upon the traditional and modified Sobel operation. Construction and Building Materials, 2016, 120, 442-449.	7.2	43
57	Modulus simulation of asphalt binder models using Molecular Dynamics (MD) method. Construction and Building Materials, 2018, 162, 430-441.	7.2	43
58	Accelerated Discrete-Element Modeling of Asphalt-Based Materials with the Frequency-Temperature Superposition Principle. Journal of Engineering Mechanics - ASCE, 2011, 137, 355-365.	2.9	42
59	Comparative study on the properties of WMA mixture using foamed admixture and free water system. Construction and Building Materials, 2013, 48, 45-50.	7.2	41
60	Effects of Physio-Chemical Factors on Asphalt Aging Behavior. Journal of Materials in Civil Engineering, 2014, 26, 190-197.	2.9	41
61	Laboratory Testing of Rheological Behavior of Water-Foamed Bitumen. Journal of Materials in Civil Engineering, 2018, 30, .	2.9	39
62	Correlation of DSR Results and FTIR's Carbonyl and Sulfoxide Indexes: Effect of Aging Temperature on Asphalt Rheology. Journal of Materials in Civil Engineering, 2019, 31, .	2.9	38
63	Performance Test on Styrene-Butadiene-Styrene (SBS) Modified Asphalt Based on the Different Evaluation Methods. Applied Sciences (Switzerland), 2019, 9, 467.	2.5	37
64	Analysis of performance and mechanism of Buton rock asphalt modified asphalt. Journal of Applied Polymer Science, 2019, 136, 46903.	2.6	37
65	Integrated Experimental-Numerical Approach for Estimating Asphalt Mixture Induction Healing Level through Discrete Element Modeling of a Single-Edge Notched Beam Test. Journal of Materials in Civil Engineering, 2015, 27, .	2.9	36
66	Development of morphological properties of road surfacing aggregates during the polishing process. International Journal of Pavement Engineering, 2017, 18, 367-380.	4.4	36
67	Investigating the Sensitivity of Aggregate Size within Sand Mastic by Modeling the Microstructure of an Asphalt Mixture. Journal of Materials in Civil Engineering, 2011, 23, 580-586.	2.9	35
68	Sensitivity of flexible pavement design to Michigan's climatic inputs using pavement ME design. International Journal of Pavement Engineering, 2017, 18, 622-632.	4.4	35
69	Design of Experiment on Concrete Mechanical Properties Prediction: A Critical Review. Materials, 2021, 14, 1866.	2.9	35
70	Automated real aggregate modelling approach in discrete element method based on X-ray computed tomography images. International Journal of Pavement Engineering, 2017, 18, 837-850.	4.4	33
71	Rheological Performance of Bio-Char Modified Asphalt with Different Particle Sizes. Applied Sciences (Switzerland), 2018, 8, 1665.	2.5	33
72	Material selections in asphalt pavement for wet-freeze climate zones: A review. Construction and Building Materials, 2019, 201, 510-525.	7.2	33

#	Article	IF	CITATIONS
73	Quantification of physicochemical properties, activation energy, and temperature susceptibility of foamed asphalt binders. Construction and Building Materials, 2017, 153, 557-568.	7.2	32
74	Aggregate Shape Characterization Using Virtual Measurement of Three-Dimensional Solid Models Constructed from X-Ray CT Images of Aggregates. Journal of Materials in Civil Engineering, 2018, 30, .	2.9	31
75	Assessment of nanoparticles dispersion in asphalt during bubble escaping and bursting: Nano hydrated lime modified foamed asphalt. Construction and Building Materials, 2018, 184, 391-399.	7.2	31
76	Effect of anisotropic characteristics on the mechanical behavior of asphalt concrete overlay. Frontiers of Structural and Civil Engineering, 2019, 13, 110-122.	2.9	31
77	Aggregate representation for mesostructure of stone based materials using a sphere growth model based on realistic aggregate shapes. Materials and Structures/Materiaux Et Constructions, 2016, 49, 2493-2508.	3.1	30
78	A hybrid strategy in selecting diverse combinations of innovative sustainable materials for asphalt pavements. Journal of Traffic and Transportation Engineering (English Edition), 2016, 3, 89-103.	4.2	29
79	Viscoelastic Fatigue Damage Properties of Asphalt Mixture with Different Aging Degrees. KSCE Journal of Civil Engineering, 2018, 22, 2073-2081.	1.9	29
80	Determination of optimal mix from the standpoint of short term aging based on asphalt mixture fracture properties using response surface method. Construction and Building Materials, 2018, 179, 35-48.	7.2	29
81	Estimation of cumulative energy demand and green house gas emissions of ethanol foamed WMA using life cycle assessment analysis. Construction and Building Materials, 2015, 93, 1117-1124.	7.2	28
82	Refining the Calculation Method for Fatigue Failure Criterion of Asphalt Binder from Linear Amplitude Sweep Test. Journal of Materials in Civil Engineering, 2018, 30, .	2.9	28
83	Correlate aggregate angularity characteristics to the skid resistance of asphalt pavement based on image analysis technology. Construction and Building Materials, 2020, 242, 118150.	7.2	28
84	Performance evaluation of warm mix asphalt containing reclaimed asphalt mixtures. International Journal of Pavement Engineering, 2017, 18, 981-989.	4.4	27
85	Design and Performance of Polyurethane Elastomers Composed with Different Soft Segments. Materials, 2020, 13, 4991.	2.9	27
86	The Effect of Waste Engine Oil and Waste Polyethylene on UV Aging Resistance of Asphalt. Polymers, 2020, 12, 602.	4.5	27
87	Effects of mean annual temperature and mean annual precipitation on the performance of flexible pavement using ME design. International Journal of Pavement Engineering, 2016, 17, 647-658.	4.4	26
88	Flame Resistance of Asphalt Mixtures with Flame Retardants through a Comprehensive Testing Program. Journal of Materials in Civil Engineering, 2017, 29, .	2.9	26
89	Strength and durability of dry-processed stone matrix asphalt containing cement pre-coated scrap tire rubber particles. Construction and Building Materials, 2019, 214, 475-483.	7.2	26
90	Characterization and evaluation of morphological features for aggregate in asphalt mixture: A review. Construction and Building Materials, 2021, 273, 121989.	7.2	26

#	Article	IF	CITATIONS
91	Review of advances in understanding impacts of mix composition characteristics on asphalt concrete (AC) mechanics. International Journal of Pavement Engineering, 2011, 12, 385-405.	4.4	25
92	A novel double-drum mixing technique for plant hot mix asphalt recycling with high reclaimed asphalt pavement content and rejuvenator. Construction and Building Materials, 2017, 134, 236-244.	7.2	25
93	Review of sustainability, pretreatment, and engineering considerations of asphalt modifiers from the industrial solid wastes. Journal of Traffic and Transportation Engineering (English Edition), 2019, 6, 209-244.	4.2	25
94	Adhesion Evaluation of Asphalt-Aggregate Interface Using Surface Free Energy Method. Applied Sciences (Switzerland), 2017, 7, 156.	2.5	24
95	Leaching evaluation and performance assessments of asphalt mixtures with recycled cathode ray tube glass: A preliminary study. Journal of Cleaner Production, 2021, 279, 123716.	9.3	24
96	Effects of Regular-Sized and Nanosized Hydrated Lime on Binder Rheology and Surface Free Energy of Adhesion of Foamed Warm Mix Asphalt. Journal of Materials in Civil Engineering, 2015, 27, .	2.9	23
97	Property Analysis of Exfoliated Graphite Nanoplatelets Modified Asphalt Model Using Molecular Dynamics (MD) Method. Applied Sciences (Switzerland), 2017, 7, 43.	2.5	23
98	Investigation of hot mixture asphalt with high ground tire rubber content. Journal of Cleaner Production, 2020, 277, 124037.	9.3	23
99	Performances Evaluation of Cecabase® RT in Warm Mix Asphalt Technology. Procedia, Social and Behavioral Sciences, 2013, 96, 2782-2790.	0.5	22
100	Investigation of the asphalt–aggregate interaction using molecular dynamics. Petroleum Science and Technology, 2017, 35, 586-593.	1.5	22
101	Ethanol based foamed asphalt as potential alternative for low emission asphalt technology. Journal of Traffic and Transportation Engineering (English Edition), 2016, 3, 116-126.	4.2	21
102	Characterizations of foamed asphalt binders prepared using combinations of physical and chemical foaming agents. Construction and Building Materials, 2019, 204, 94-104.	7.2	21
103	Traffic open time prediction of fog seal with sand using image processing technology. Construction and Building Materials, 2019, 209, 9-19.	7.2	21
104	Investigation on the morphological and mineralogical properties of coarse aggregates under VSI crushing operation. International Journal of Pavement Engineering, 2021, 22, 1611-1624.	4.4	21
105	Influence of air void structures on the coefficient of permeability of asphalt mixtures. Powder Technology, 2021, 377, 1-9.	4.2	21
106	Mechanical and Durability Analysis of Fly Ash Based Geopolymer with Various Compositions for Rigid Pavement Applications. Materials, 2022, 15, 3458.	2.9	21
107	Moisture Damage and Fatigue Cracking of Foamed Warm Mix Asphalt Using a Simple Laboratory Setup. , 2011, , .		19
108	Relationship of Coefficient of Permeability, Porosity, and Air Voids in Fine-Graded HMA. Journal of Materials in Civil Engineering, 2019, 31, .	2.9	19

#	Article	IF	CITATIONS
109	Evaluation on the rheological and mechanical properties of concrete incorporating eggshell with tire powder. Journal of Materials Research and Technology, 2021, 14, 439-451.	5.8	19
110	A Detection Method for Pavement Cracks Combining Object Detection and Attention Mechanism. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 22179-22189.	8.0	19
111	Preliminary Laboratory Evaluation of Methanol Foamed Warm Mix Asphalt Binders and Mixtures. Journal of Materials in Civil Engineering, 2017, 29, .	2.9	18
112	Asphalt Mixture with Scrap Tire Rubber and Nylon Fiber from Waste Tires: Laboratory Performance and Preliminary M-E Design Analysis. Buildings, 2022, 12, 160.	3.1	18
113	Special Issue on Multiscale and Micromechanical Modeling of Asphalt Mixes. Journal of Materials in Civil Engineering, 2011, 23, 1-1.	2.9	17
114	Dynamic Response Analysis of Rutting Resistance Performance of High Modulus Asphalt Concrete Pavement. Applied Sciences (Switzerland), 2018, 8, 2701.	2.5	17
115	Fatigue Equation of Cement-Treated Aggregate Base Materials under a True Stress Ratio. Applied Sciences (Switzerland), 2018, 8, 691.	2.5	17
116	Investigating the mechanisms of rubber, styrene-butadiene-styrene and ethylene-vinyl acetate in asphalt binder based on rheological and distress-related tests. Construction and Building Materials, 2020, 262, 120744.	7.2	17
117	Cold In-Place Recycling Asphalt Mixtures: Laboratory Performance and Preliminary M-E Design Analysis. Materials, 2021, 14, 2036.	2.9	17
118	Engineering and microscopic characteristics of natural rubber latex modified binders incorporating silane additive. International Journal of Pavement Engineering, 2020, 21, 1874-1883.	4.4	16
119	Artificial Intelligence Prediction of Rutting and Fatigue Parameters in Modified Asphalt Binders. Applied Sciences (Switzerland), 2020, 10, 7764.	2.5	16
120	Predictive models for dynamic modulus using weighted least square nonlinear multiple regression model. Canadian Journal of Civil Engineering, 2012, 39, 589-597.	1.3	15
121	Optimization in producing warm mix asphalt with polymer modified binder and surfactant-wax additive. Construction and Building Materials, 2017, 141, 578-588.	7.2	15
122	Aggregate Representation Approach in 3D Discrete-Element Modeling Supporting Adaptive Shape and Mass Property Fitting of Realistic Aggregates. Journal of Engineering Mechanics - ASCE, 2020, 146, .	2.9	15
123	Physical, chemical and morphology characterisation of nano ceramic powder as bitumen modification. International Journal of Pavement Engineering, 2021, 22, 858-871.	4.4	15
124	Air void effect on an idealised asphalt mixture using two-dimensional and three-dimensional discrete element modelling approach. International Journal of Pavement Engineering, 2010, 11, 381-391.	4.4	14
125	The effects of initial conditioning and ambient temperatures on abrasion loss and temperature change of porous asphalt. Construction and Building Materials, 2012, 29, 108-113.	7.2	14
126	Updating and augmenting weather data for pavement mechanistic-empirical design using ASOS/AWOS database in Michigan. International Journal of Pavement Engineering, 2018, 19, 1025-1033.	4.4	14

Mohd Rosli Mohd Hasan

#	Article	IF	CITATIONS
127	Rheological properties and chemical characterisation of reacted and activated rubber modified asphalt binder. Road Materials and Pavement Design, 2020, 21, S140-S154.	4.0	14
128	Evaluation of Warm Mix Asphalt Produced at Various Temperatures through Dynamic Modulus Testing and Four Point Beam Fatigue Testing. , 2011, , .		13
129	Laboratory shear bond test for chip-seal under varying environmental and material conditions. International Journal of Pavement Engineering, 2021, 22, 1107-1115.	4.4	13
130	Effects of short-term ageing scenarios on asphalt mixtures' fracture properties using imaging technique and response surface method. International Journal of Pavement Engineering, 2020, 21, 1374-1392.	4.4	13
131	Microscopic analysis and mechanical properties of Recycled Paper Mill Sludge modified asphalt mixture using granite and limestone aggregates. Construction and Building Materials, 2020, 243, 118172.	7.2	13
132	Preliminary study of modified asphalt binders with thermoplastics: The Rheology properties and interfacial adhesion between thermoplastics and asphalt binder. Construction and Building Materials, 2021, 301, 124373.	7.2	13
133	Correlation Analysis between Temperature Indices and Flexible Pavement Distress Predictions Using Mechanistic-Empirical Design. Journal of Cold Regions Engineering - ASCE, 2017, 31, .	1.1	12
134	Comparative evaluation of rheological properties and micromechanics of non-foamed and foamed asphalt mastic. Construction and Building Materials, 2018, 193, 654-664.	7.2	12
135	A Review of Characteristics of Bio-Oils and Their Utilization as Additives of Asphalts. Molecules, 2021, 26, 5049.	3.8	12
136	Resilient Modulus and Dynamic Modulus of Warm Mix Asphalt. , 2008, , .		11
137	The effects of break point location and nominal maximum aggregate size on porous asphalt properties. Construction and Building Materials, 2013, 44, 360-367.	7.2	11
138	Effects of Short-Term Aging on the Compactibility and Volumetric Properties of Asphalt Mixtures Using the Response Surface Method. Sustainability, 2020, 12, 6181.	3.2	11
139	Concave distribution characterization of asphalt pavement surface segregation using smartphone and image processing based techniques. Construction and Building Materials, 2021, 301, 124111.	7.2	11
140	Preparation and Properties of Waterborne Epoxy–Modified Emulsified Asphalt Binder (WEMEAB). Journal of Testing and Evaluation, 2020, 48, 20160572.	0.7	11
141	Study on Workability and Skid Resistance of Bio-Oil–Modified Fog Seal with Sand. Journal of Testing and Evaluation, 2020, 48, 2072-2092.	0.7	11
142	Laboratory Performance and Field Case Study of Asphalt Mixture with Sasobit Treated Aramid Fiber as Modifier. Transportation Research Record, 2022, 2676, 811-824.	1.9	11
143	Performance Analysis of Direct Coal Liquefaction Residue (DCLR) and Trinidad Lake Asphalt (TLA) for the Purpose of Modifying Traditional Asphalt. Arabian Journal for Science and Engineering, 2016, 41, 3983-3993.	1.1	10
144	Effects of a surfactant-wax based warm additive on high temperature rheological properties of asphalt binders. Construction and Building Materials, 2018, 183, 395-407.	7.2	10

#	Article	IF	CITATIONS
145	Relationship between Air Voids and Permeability: Effect on Water Scouring Resistance in HMA. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	10
146	Warm Mix Asphalt Using Sasobit in Cold Region. , 2009, , .		9
147	Comparative study on engineering properties and energy efficiency of asphalt mixes incorporating fly ash and cement. Construction and Building Materials, 2018, 168, 295-304.	7.2	9
148	Effects of Titanate Coupling Agent on Engineering Properties of Asphalt Binders and Mixtures Incorporating LLDPE-CaCO3 Pellet. Applied Sciences (Switzerland), 2018, 8, 1029.	2.5	9
149	A Combinational Prediction Model for Transverse Crack of Asphalt Pavement. KSCE Journal of Civil Engineering, 2018, 22, 2109-2117.	1.9	9
150	Workability, compactibility and engineering properties of rubber-modified asphalt mixtures prepared via wet process. International Journal of Pavement Research and Technology, 2021, 14, 560-569.	2.6	9
151	Three-Dimensional Discrete Element Simulation of Asphalt Concrete Subjected to Haversine Loading. Road Materials and Pavement Design, 2010, 11, 273-290.	4.0	8
152	Optimization of fly ash based geopolymer mix design for rigid pavement application. AIP Conference Proceedings, 2019, , .	0.4	8
153	Introducing New Indicators to Evaluate Fracture Properties of Asphalt Mixtures Using Semicircular Bending Test. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2019, 43, 541-549.	1.9	8
154	Development and Application of the Single-Spiral Inductive-Capacitive Resonant Circuit Sensor for Wireless, Real-Time Characterization of Moisture in Sand. Journal of Sensors, 2013, 2013, 1-7.	1.1	7
155	Disruption of air voids continuity based on permeability loss due to mortar creep. Construction and Building Materials, 2016, 116, 347-354.	7.2	7
156	Performance characterizations of asphalt binders and mixtures incorporating silane additive ZycoTherm. AIP Conference Proceedings, 2017, , .	0.4	7
157	Preparation and Properties of Asphalt Binders Modified by THFS Extracted From Direct Coal Liquefaction Residue. Applied Sciences (Switzerland), 2017, 7, 1155.	2.5	7
158	Comparative study of ethanol foamed asphalt binders and mixtures prepared via manual injection and laboratory foaming device. Journal of Traffic and Transportation Engineering (English Edition), 2019, 6, 383-395.	4.2	7
159	Porosity Prediction of Granular Materials through Discrete Element Method and Back Propagation Neural Network Algorithm. Applied Sciences (Switzerland), 2020, 10, 1693.	2.5	7
160	Physico-Mechanical and Morphological Properties of Wax Latex-Modified Asphalt Binder. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2021, 45, 865-878.	1.9	7
161	High, intermediate and low temperature performance appraisal of elastomeric and plastomeric asphalt binders and mixes. Journal of Elastomers and Plastics, 2022, 54, 225-246.	1.5	7
162	Performance of ethanol and ethanol-NaHCO3 based foamed WMA mixtures for low emission asphalt technology. Construction and Building Materials, 2018, 192, 9-19.	7.2	6

#	Article	IF	CITATIONS
163	Behavioural interface-bonding and chemical characterization of silane and wax based additives on latex modified asphalt binders. International Journal of Adhesion and Adhesives, 2021, 106, 102822.	2.9	6
164	Multi-scale characterization of hydrated lime mastics. Canadian Journal of Civil Engineering, 2017, 44, 985-993.	1.3	5
165	Towards an Alternate Evaluation of Moisture-Induced Damage of Bituminous Materials. Applied Sciences (Switzerland), 2017, 7, 1049.	2.5	5
166	Effect of Water Absorption and Loss Characteristics of Fine Aggregates on Aggregate-Asphalt Adhesion. KSCE Journal of Civil Engineering, 2021, 25, 2020-2035.	1.9	5
167	The Influence of Nano Titanium as Bitumen Modifier in Stone Mastic Asphalt. Advances in Materials Science and Engineering, 2022, 2022, 1-19.	1.8	5
168	An alternative protocol to artificially simulate short-term ageing of binders for selected regional condition. Construction and Building Materials, 2018, 161, 654-664.	7.2	4
169	Effects of Preheating on the Rheological Properties of Rejuvenated Asphalt Binder. Transportation Research Record, 2019, 2673, 546-557.	1.9	4
170	Alternative Testing Protocol to Assess the Bonding and Shear Resistance of Pavement Bituminous Crack-Sealant Material. Lecture Notes in Civil Engineering, 2020, , 1187-1200.	0.4	4
171	Assessments of Potential Service Characteristics of Ethanol and Ethanol-NaHCO3 Foamed WMA Mixtures. Journal of Materials in Civil Engineering, 2019, 31, .	2.9	3
172	Pavement performance zone based on mechanistic-empirical design and temperature indices. Transportmetrica A: Transport Science, 2019, 15, 91-113.	2.0	3
173	Serviceability during asphaltic concrete production and leaching concerns of asphalt mixture prepared with recycled paper mill sludge. International Journal of Pavement Engineering, 2020, , 1-11.	4.4	3
174	Application of diluted methanol to allow the production of latex modified asphalt mixture with lower energy consumption. Construction and Building Materials, 2020, 262, 120028.	7.2	3
175	Experimental assessments of methanol-based foaming agent in latex modified foamed binders and warm asphalt mixtures. , 2022, 2, 84-97.		3
176	A Review of Asphaltic Crack Healing Approaches and Its Mechanism. Advances in Materials Science and Engineering, 2021, 2021, 1-15.	1.8	3
177	A Review on Utilization of Electronic Waste Plastics for Use Within Asphaltic Concrete Materials: Development, Opportunities and Challenges for Successful Implementation. , 2020, , 737-749.		2
178	Achievements and Prospects of Functional Pavement: Materials and Structures. Applied Sciences (Switzerland), 2020, 10, 7720.	2.5	2
179	Sensitivity of Rigid Pavement Performance Predictions to Individual Climate Variables using Pavement ME Design. Journal of Transportation Engineering Part B: Pavements, 2020, 146, 04020028.	1.5	2
180	Effects of Sodium Sulfate Attack on Concrete Incorporated with Drying-Wetting Cycles. Advances in Civil Engineering, 2021, 2021, 1-12.	0.7	2

#	Article	IF	CITATIONS
181	Evaluations of Plant-Produced Foamed Warm Mixture Asphalt. , 2016, , .		1
182	Effects of compaction delay on the performance of porous asphalt mixture compacted at different thicknesses. AIP Conference Proceedings, 2017, , .	0.4	1
183	Advanced Paving Materials and Technologies. Applied Sciences (Switzerland), 2018, 8, 588.	2.5	1
184	Characteristics of Latex-Modified Bitumen Prepared via Foaming Technique Using Water and Diluted Methanol. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	1
185	Physicomechanical Assessments and Heavy Metals' Leaching Potential of Modified Asphalt Binders Incorporating Crumb Rubber and Tin Slag Powders. Advances in Materials Science and Engineering, 2021, 2021, 1-10.	1.8	1
186	Morphological Identification of Latex Modified Asphalt Binder Prepared with Surfactants. Lecture Notes in Civil Engineering, 2020, , 1175-1185.	0.4	1
187	Proposed Japanese Mix Design Methodology for Porous Asphalt Using Modified Binder. , 2016, , .		1
188	Comparing Machine Learning Models with Witczak NCHRP 1-40D Model for Hot-Mix Asphalt Dynamic Modulus Prediction. Arabian Journal for Science and Engineering, 2022, 47, 13579-13591.	3.0	1
189	Closure to "Linear and Nonlinear Rheological Properties of Bituminous Mastics under Large Amplitude Oscillatory Shear Testing―by Aboelkasim Diab and Zhanping You. Journal of Materials in Civil Engineering, 2019, 31, 07019002.	2.9	0
190	Achievements and Prospects of Advanced Pavement Materials Technologies. Applied Sciences (Switzerland), 2020, 10, 7743.	2.5	0
191	Performance Evaluations of Pavement Underlying Chip-Seal: Laboratory Testing on Pavement Cores. , 2020, , .		0
192	Synthesis of Longitudinal Joint of Flexible Pavement. Jurnal Teknologi (Sciences and Engineering), 2015, 73, .	0.4	0
193	Bio-Asphalt Diffusion Properties Based on Molecular Dynamics Simulation. , 2021, , .		0
194	Characterization of hydrophobic-treated recycled paper mill sludge in bituminous materials. E3S Web of Conferences, 2022, 347, 01016.	0.5	0
195	New Methodology to Characterize the Workability of Asphaltic Concrete Mixtures Based on Kinematic Compaction Energy. Sustainability, 2022, 14, 6550.	3.2	Ο