
Christopher S Rose

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9199433/publications.pdf Version: 2024-02-01

1 Amphibian Hormones, Calcium Phytology, Bone Weight, and Lung Use Call for a More Inclusive Approach to Understanding Costification Sequence Evolution. Fromiers in Ecology and Evolution. 2.2 5 20 Investigation of CK Theory Based Approach for Innovative Solutions in Bioinspired Design. Designs, 2.4 4 3 How thyroid hormones and their inhibitors affect cartilage growth and shape in the frog cip Xenopus 1.5 11 4 Deconstructing cartilage shape and size into contributions from embryogenesis, metamorphosis, and 1.6 13 5 The importance of cartilage to amphibian development and evolution. International Journal of Developmental Biology, 2014, 32, 365-375. 0.0 12 6 Caging, but not air deprivation, slows tadpole growth and development in the amphibian cip Xenopus 1.2 8 7 Pasticity of lung development in the amphibian, cip Xenopus 1.2 22 8 Centerating, growing and transforming sheletal shape: insights from amphibian pharyngeal arch 2.6 0 10 Biological Emergences: Evolution by Natural Experiment. Robert GB. Reld. Integrative and Comparative 2.0 0 11 Biology on the Modese Using the Double Edged Sowed of Popular Culture to Enhance Public 1.1 10 12 Integrating a Generating of Science: Evolutionary Biology, 2007, 34, 4954. <td< th=""><th>#</th><th>Article</th><th>IF</th><th>CITATIONS</th></td<>	#	Article	IF	CITATIONS
2 2019, 3, 39. 2.44 4 3 How thyroid hormones and their inhibitors affect cartilage growth and shape in the frog 1.5 xeropus 1.5 11 4 Deconstructing cartilage shape and size into contributions from embryogenesis, metamorphosis, and tadpole and frog growth. Journal of Anatomy, 2015, 226, 575-595. 1.5 13 5 The Importance of cartilage to amphibian development and evolution. International Journal of 0.6 12 6 Caging, but not air deprivation, slows tadpole growth and development in the amphibian 0.5 xeropus 1.2 8 7 Plasticity of lung development in the amphibian, 52.5 xeropus 2.5 22 9 Pere Alberch: Originator of ExoDevo. Biology, 2014, 321, 365-375. 1.6 6 10 Biological Emergences: Evolution by Natural Experiment. Robert G.B. Reid., Integrative and Comparative Biology, 2008, 48, 871-873. 2.0 0 11 Biological Emergences: Evolution by Natural Experiment. Robert G.B. Reid., Integrative and Comparative Biology and Evolution, 2005, 20, 129-135. 1.0 2.0 0 11 Biology and Evolution, 2005, 20, 129-135. 1.0 2.0 0 2.0 0 12 Integrating of Sonue scientin Remodeling Tadpole Tissues Defines 1.1	1	Approach to Understanding Ossification Sequence Evolution. Frontiers in Ecology and Evolution,	2.2	5
3 laevis (h): Journal of Anatomy, 2019, 234, 89-105. hs h 4 Deconstructing cartilage shape and size into contributions from embryogenesis, metamorphosis, and h.5 hs 6 The importance of cartilage to amphibian development and evolution. International Journal of 0.6 hs 7 Developmental Biology, 2014, 58, 917-927. 0.6 hs 8 Caging, but not air deprivation, slows tadpole growth and development in the amphibian (1)-Xenopus hs hs 7 Plasticity of lung development in the amphibian, (1)-Xenopus laevis (1) Biology Open, 2013, 2, 1324-1335. hs hs 8 Cenerating, growing and transforming skeletal shape: Insights from amphibian pharyngeal arch 2.5 22 9 Pere Alberch: Originator of EvoDevo. Biological Theory, 2008, 3, 351-356. hs 6 10 Biology and twelopment biology, 2007, 34, 49-54. ht ht 11 Understanding of Science. Evolution by Natural Experiment. Robert Cal. Reid Integrative and Comparative 2.0 0 12 Integrating ecology and development ablogy, 2007, 34, 49-54. ht ht 10 11 Understanding of Science. Evolution by Natural Experiment. Robert Cal. Reid Integrative and Comparative kno go<	2		2.4	4
1 tadpole and frög growth. Journal of Anatomy. 2015, 226, 575-595. 1.3 1.3 1.3 5 The importance of cartilage to amphibian development and evolution. International Journal of Developmental Biology. 2014, 58, 917-927. 0.6 12 6 Caging, but not air deprivation, slows tadpole growth and development in the amphibian (1) Xenopus 1.2 8 7 Plasticity of lung development in the amphibian, (1) Xenopus laevis (1). Biology Open, 2013, 2, 1324-1335. 1.2 32 8 Generating, growing and transforming skeletal shape: insights from amphibian pharyngeal arch cartilages. BioEssays, 2009, 31, 287-299. 2.5 22 9 Pere Alberch: Originator of EvoDevo. Biological Theory, 2008, 3, 351-356. 1.5 6 10 Biological Emergences: Evolution by Natural Experiment. Robert C.B. Reid. Integrative and Comparative Biology, 2008, 48, 871-873. 2.0 0 11 Biological Emergences: Evolutionary Biology, 2007, 34, 49-54. 1.1 10 12 Integrating ecology and development and Evolutionacy Biology, 2005, 25, 523-532. 1.0 2.9 13 Jeholotriton paradoxus(Amphibia: Caudata) from the Lower Cretaceous of southeastern Inner Mongola, China. Journal of Vertebrate Paleontology, 2005, 25, 523-532. 1.0 2.9 14 Hormonal Control in Larval Development and Ev	3		1.5	11
b Developmental Biology, 2014, 58, 917-927. 0.0 12 6 Caging, but not air deprivation, slows tadpole growth and development in the amphibian laevis<(b. Journal of Experimental Zoology, 2014, 321, 365-375.	4		1.5	13
8 Iaevis*(h), journal of Experimental Zoology, 2014, 321, 365-375. 1.2 1.2 8 7 Plasticity of lung development in the amphibian, <b <h="" laevis="" xenopus="">>. Biology Open, 2013, 2, 1324-1335. 1.2 32 8 Cenerating, growing and transforming skeletal shape: insights from amphibian pharyngeal arch cartilages. BioEssays, 2009, 31, 287-299. 2.5 22 9 Pere Alberch: Originator of EvoDevo. Biological Theory, 2008, 3, 351-356. 1.5 6 10 Biology, 2008, 48, 871-873. 1.0 0 11 Biology, 2008, 48, 871-873. 1.1 10 12 Integrating ecology and developmental biology to explain the timing of frog metamorphosis. Trends in Ecology and Evolution, 2005, 20, 129-135. 9.2 13 Jeholotriton paradoxus(Amphibia: Caudata) from the Lower Cretaceous of southeastern Inner Mongola, China. Journal of Vertebrate Paleontology, 2005, 25, 523-532. 1.0 29 14 Hormonal Control in Larval Development and Evolution& Campensine. Developmental Biology, 1998, 203, 24-35. 2.0 118 16 An endocrine& Grobust of Gene Expression Programs. Developmental Biology, 1998, 203, 24-35. 2.0 118	5	The importance of cartilage to amphibian development and evolution. International Journal of Developmental Biology, 2014, 58, 917-927.	0.6	12
8 Generating, growing and transforming skeletal shape: insights from amphibian pharyngeal arch cartilages. BioEssays, 2009, 31, 287-299. 2.5 22 9 Pere Alberch: Originator of EvoDevo. Biological Theory, 2008, 3, 351-356. 1.5 6 10 Biological Emergences: Evolution by Natural Experiment. Robert G.B. Reid. Integrative and Comparative Biology, 2008, 48, 871-873. 2.0 0 11 Biology in the Movies: Using the Double-Edged Sword of Popular Culture to Enhance Public Inderstanding of Science. Evolutionary Biology, 2007, 34, 49-54. 1.1 10 12 Integrating ecology and developmental biology to explain the timing of frog metamorphosis. Trends in Ecology and Evolution, 2005, 20, 129-135. 8.7 92 13 Jeholotrition paradoxus(Amphibia: Caudata) from the Lower Cretaceous of southeastern Inner Mongola, China. Journal of Vertebrate Paleontology, 2005, 25, 523-532. 1.0 29 14 Hormonal Control in Larval Development and Evolution& Cretaceous of southeastern Inner Distinct Growth and Resorption Gene Expression Programs. Developmental Biology, 1998, 203, 24-35. 2.0 118 16 An endocrine& Crowth and Resorption Gene Expression Programs. Developmental Biology, 1998, 203, 24-35. 1.7 36	6		1.2	8
a cartilages. BioEssays, 2009, 31, 287-299. 2.3 22 9 Pere Alberch: Originator of EvoDevo. Biological Theory, 2008, 3, 351-356. 1.5 6 10 Biological Emergences: Evolution by Natural Experiment. Robert G.B. Reid Integrative and Comparative Biology, 2008, 48, 871-873. 2.0 0 11 Biology in the Movies: Using the Double-Edged Sword of Popular Culture to Enhance Public Understanding of Science. Evolutionary Biology, 2007, 34, 49-54. 1.1 10 12 Integrating ecology and developmental biology to explain the timing of frog metamorphosis. Trends in Ecology and Evolution, 2005, 20, 129-135. 8.7 92 13 Jeholotriton paradoxus(Amphibia: Caudata) from the Lower Cretaceous of southeastern Inner Mongolia, China. Journal of Vertebrate Paleontology, 2005, 25, 523-532. 1.0 29 14 Hormonal Control in Larval Development and Evolutionâ€"Amphibians., 1999, , 167-VI. 23 15 The Expression Pattern of Thyroid Hormone Response Genes in Remodeling Tadpole Tissues Defines Distinct Growth and Resorption Gene Expression Programs. Developmental Biology, 1998, 203, 24-35. 2.0 118 16 An endocrineâ€"based model for developmental and morphogenetic diversification in metamorphic and paedomorphic urodeles. Journal of Zoology, 1996, 239, 253-284. 1.7 36	7	Plasticity of lung development in the amphibian, <i>Xenopus laevis</i> . Biology Open, 2013, 2, 1324-1335.	1.2	32
10Biological Emergences: Evolution by Natural Experiment. Robert G.B. Reid Integrative and Comparative2.0011Biology, 2008, 48, 871-873.1.01012Biology in the Movies: Using the Double-Edged Sword of Popular Culture to Enhance Public1.11012Integrating ecology and developmental biology to explain the timing of frog metamorphosis. Trends in Ecology and Evolution, 2005, 20, 129-135.8.79213Jeholotriton paradoxus(Amphibia: Caudata) from the Lower Cretaceous of southeastern Inner Mongolia, China. Journal of Vertebrate Paleontology, 2005, 25, 523-532.1.02914Hormonal Control in Larval Development and Evolutioná€"Amphibians., 1999, , 167-VI.2315The Expression Pattern of Thyroid Hormone Response Genes in Remodeling Tadpole Tissues Defines Distinct Growth and Resorption Gene Expression Programs. Developmental Biology, 1998, 203, 24-35.2.011816An endocrineã€"based model for developmental and morphogenetic diversification in metamorphic and paedomorphic urodeles. Journal of Zoology, 1996, 239, 253-284.1.736	8		2.5	22
10 Biology, 2008, 48, 871-873. 2.0 0 11 Biology in the Movies: Using the Double-Edged Sword of Popular Culture to Enhance Public 1.1 10 11 Integrating ecology and developmental biology, 2007, 34, 49-54. 1.1 10 12 Integrating ecology and developmental biology to explain the timing of frog metamorphosis. Trends in Ecology and Evolution, 2005, 20, 129-135. 8.7 92 13 Jeholotriton paradoxus(Amphibia: Caudata) from the Lower Cretaceous of southeastern Inner Mongolia, China. Journal of Vertebrate Paleontology, 2005, 25, 523-532. 1.0 29 14 Hormonal Control in Larval Development and Evolutionâ€"Amphibians., 1999, , 167-VI. 23 15 The Expression Pattern of Thyroid Hormone Response Cenes in Remodeling Tadpole Tissues Defines Distinct Growth and Resorption Gene Expression Programs. Developmental Biology, 1998, 203, 24-35. 2.0 118 16 An endocrineâ€"based model for developmental and morphogenetic diversification in metamorphic and paedomorphic urodeles. Journal of Zoology, 1996, 239, 253-284. 1.7 36	9	Pere Alberch: Originator of EvoDevo. Biological Theory, 2008, 3, 351-356.	1.5	6
11 Understanding of Science. Evolutionary Biology, 2007, 34, 49-54. 1.1 10 12 Integrating ecology and developmental biology to explain the timing of frog metamorphosis. Trends in Ecology and Evolution, 2005, 20, 129-135. 8.7 92 13 Jeholotriton paradoxus(Amphibia: Caudata) from the Lower Cretaceous of southeastern Inner Mongolia, China. Journal of Vertebrate Paleontology, 2005, 25, 523-532. 1.0 29 14 Hormonal Control in Larval Development and Evolutionâ€"Amphibians., 1999, , 167-VI. 23 15 The Expression Pattern of Thyroid Hormone Response Genes in Remodeling Tadpole Tissues Defines Distinct Growth and Resorption Gene Expression Programs. Developmental Biology, 1998, 203, 24-35. 2.0 118 16 An endocrineâ€"based model for developmental and morphogenetic diversification in metamorphic and paedomorphic urodeles. Journal of Zoology, 1996, 239, 253-284. 1.7 36	10		2.0	0
12 Ecology and Evolution, 2005, 20, 129-135. 8.7 92 13 Jeholotriton paradoxus(Amphibia: Caudata) from the Lower Cretaceous of southeastern Inner 1.0 29 14 Hormonal Control in Larval Development and Evolutionâ€"Amphibians. , 1999, , 167-VI. 23 15 The Expression Pattern of Thyroid Hormone Response Genes in Remodeling Tadpole Tissues Defines 2.0 118 16 An endocrineâ€"based model for developmental and morphogenetic diversification in metamorphic and paedomorphic urodeles. Journal of Zoology, 1996, 239, 253-284. 1.7 36	11		1.1	10
13 Mongolia, China. Journal of Vertebrate Paleontology, 2005, 25, 523-532. 10 29 14 Hormonal Control in Larval Development and Evolution—Amphibians., 1999, , 167-VI. 23 15 The Expression Pattern of Thyroid Hormone Response Genes in Remodeling Tadpole Tissues Defines Distinct Growth and Resorption Gene Expression Programs. Developmental Biology, 1998, 203, 24-35. 2.0 118 16 An endocrine–based model for developmental and morphogenetic diversification in metamorphic and paedomorphic urodeles. Journal of Zoology, 1996, 239, 253-284. 1.7 36	12	Integrating ecology and developmental biology to explain the timing of frog metamorphosis. Trends in Ecology and Evolution, 2005, 20, 129-135.	8.7	92
15The Expression Pattern of Thyroid Hormone Response Genes in Remodeling Tadpole Tissues Defines Distinct Growth and Resorption Gene Expression Programs. Developmental Biology, 1998, 203, 24-35.2.011816An endocrine–based model for developmental and morphogenetic diversification in metamorphic and paedomorphic urodeles. Journal of Zoology, 1996, 239, 253-284.1.736	13	Jeholotriton paradoxus(Amphibia: Caudata) from the Lower Cretaceous of southeastern Inner Mongolia, China. Journal of Vertebrate Paleontology, 2005, 25, 523-532.	1.0	29
15 Distinct Growth and Resorption Gene Expression Programs. Developmental Biology, 1998, 203, 24-35. 2.0 118 16 An endocrine–based model for developmental and morphogenetic diversification in metamorphic and paedomorphic urodeles. Journal of Zoology, 1996, 239, 253-284. 1.7 36	14	Hormonal Control in Larval Development and Evolution—Amphibians. , 1999, , 167-VI.		23
¹⁶ paedomorphic urodeles. Journal of Zoology, 1996, 239, 253-284.	15	The Expression Pattern of Thyroid Hormone Response Genes in Remodeling Tadpole Tissues Defines Distinct Growth and Resorption Gene Expression Programs. Developmental Biology, 1998, 203, 24-35.	2.0	118
	16	An endocrine–based model for developmental and morphogenetic diversification in metamorphic and paedomorphic urodeles. Journal of Zoology, 1996, 239, 253-284.	1.7	36
17 Board 113: Evidence-based Resources that Scaffold Students in Performing Bio-inspired Design. , 0, , . 0	17	Board 113: Evidence-based Resources that Scaffold Students in Performing Bio-inspired Design. , 0, , .		0

18 Enhancing the Pedagogy of Bio-inspired Design in an Engineering Curriculum. , 0, , .

0

	CITATIONS
Preliminary Findings From a Comparative Study of Two Bio-inspired Design Methods in a Second-year Engineering Curriculum. , 0, , .	1

20 Board # 107 : Teaching Bio-inspired Design Using C-K Theory. , 0, , .

3