Michelle Anne Keske

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9199175/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Obesity Blunts Microvascular Recruitment in Human Forearm Muscle After a Mixed Meal. Diabetes Care, 2009, 32, 1672-1677.	4.3	96
2	Ageâ€related anabolic resistance after enduranceâ€type exercise in healthy humans. FASEB Journal, 2010, 24, 4117-4127.	0.2	73
3	Vascular and Metabolic Actions of the Green Tea Polyphenol Epigallocatechin Gallate. Current Medicinal Chemistry, 2014, 22, 59-69.	1.2	70
4	Effects of Vitamin C Supplementation on Glycemic Control and Cardiovascular Risk Factors in People With Type 2 Diabetes: A GRADE-Assessed Systematic Review and Meta-analysis of Randomized Controlled Trials. Diabetes Care, 2021, 44, 618-630.	4.3	66
5	Increased muscle blood supply and transendothelial nutrient and insulin transport induced by food intake and exercise: effect of obesity and ageing. Journal of Physiology, 2016, 594, 2207-2222.	1.3	61
6	Clinical Overview of Algal-Docosahexaenoic Acid: Effects on Triglyceride Levels and Other Cardiovascular Risk Factors. American Journal of Therapeutics, 2009, 16, 183-192.	0.5	55
7	Muscle microvascular blood flow responses in insulin resistance and ageing. Journal of Physiology, 2016, 594, 2223-2231.	1.3	50
8	Skeletal Muscle Microvascular-Linked Improvements in Glycemic Control From Resistance Training in Individuals With Type 2 Diabetes. Diabetes Care, 2017, 40, 1256-1263.	4.3	50
9	FADS Polymorphism, Omega-3 Fatty Acids and Diabetes Risk: A Systematic Review. Nutrients, 2018, 10, 758.	1.7	36
10	The Effects of Restriction Pressures on the Acute Responses to Blood Flow Restriction Exercise. Frontiers in Physiology, 2019, 10, 1018.	1.3	35
11	Muscle insulin resistance resulting from impaired microvascular insulin sensitivity in Sprague Dawley rats. Cardiovascular Research, 2013, 98, 28-36.	1.8	34
12	Brachial-to-radial SBP amplification. Journal of Hypertension, 2015, 33, 1876-1883.	0.3	34
13	Loss of insulinâ€mediated microvascular perfusion in skeletal muscle is associated with the development of insulin resistance. Diabetes, Obesity and Metabolism, 2010, 12, 798-805.	2.2	33
14	Local NOS inhibition impairs vascular and metabolic actions of insulin in rat hindleg muscle in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E745-E750.	1.8	33
15	Reactive oxygen species in exercise and insulin resistance: Working towards personalized antioxidant treatment. Redox Biology, 2021, 44, 102005.	3.9	30
16	Leg blood flow and skeletal muscle microvascular perfusion responses to submaximal exercise in peripheral arterial disease. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1425-H1433.	1.5	29
17	Association of Exercise Intolerance in Type 2 Diabetes With Skeletal Muscle Blood Flow Reserve. JACC: Cardiovascular Imaging, 2015, 8, 913-921.	2.3	28
18	A vascular mechanism for high-sodium-induced insulin resistance in rats. Diabetologia, 2014, 57, 2586-2595.	2.9	25

MICHELLE ANNE KESKE

#	Article	IF	CITATIONS
19	A New Method for Targeted and Sustained Induction of Type 2 Diabetes in Rodents. Scientific Reports, 2017, 7, 14158.	1.6	25
20	Oral glucose challenge impairs skeletal muscle microvascular blood flow in healthy people. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E307-E315.	1.8	24
21	Dietary Patterns Characterized by Fat Type in Association with Obesity and Type 2 Diabetes: A Longitudinal Study of UK Biobank Participants. Journal of Nutrition, 2021, 151, 3570-3578.	1.3	20
22	Regulation of microvascular flow and metabolism: An overview. Clinical and Experimental Pharmacology and Physiology, 2017, 44, 143-149.	0.9	19
23	Impairments in Adipose Tissue Microcirculation in Type 2 Diabetes Mellitus Assessed by Real-Time Contrast-Enhanced Ultrasound. Circulation: Cardiovascular Imaging, 2018, 11, e007074.	1.3	17
24	Microvascular blood flow responses to muscle contraction are not altered by highâ€fat feeding in rats. Diabetes, Obesity and Metabolism, 2012, 14, 753-761.	2.2	15
25	Exercise aortic stiffness: reproducibility and relation to end-organ damage in men. Journal of Human Hypertension, 2013, 27, 516-522.	1.0	15
26	Microvascular Contributions to Insulin Resistance. Diabetes, 2013, 62, 343-345.	0.3	13
27	Acute vascular and metabolic actions of the green tea polyphenol epigallocatechin 3-gallate in rat skeletal muscle. Journal of Nutritional Biochemistry, 2017, 40, 23-31.	1.9	12
28	High-glucose mixed-nutrient meal ingestion impairs skeletal muscle microvascular blood flow in healthy young men. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E1014-E1021.	1.8	12
29	No effect of NOS inhibition on skeletal muscle glucose uptake during in situ hindlimb contraction in healthy and diabetic Sprague-Dawley rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R862-R871.	0.9	11
30	Effect of mitochondrialâ€ŧargeted antioxidants on glycaemic control, cardiovascular health, and oxidative stress in humans: A systematic review and metaâ€analysis of randomized controlled trials. Diabetes, Obesity and Metabolism, 2022, 24, 1047-1060.	2.2	11
31	Brachial-to-radial systolic blood pressure amplification in patients with type 2 diabetes mellitus. Journal of Human Hypertension, 2016, 30, 404-409.	1.0	10
32	Postprandial microvascular blood flow in skeletal muscle: Similarities and disparities to the hyperinsulinaemicâ€euglycaemic clamp. Clinical and Experimental Pharmacology and Physiology, 2020, 47, 725-737.	0.9	10
33	CrossTalk proposal: <i>De novo</i> capillary recruitment in healthy muscle is necessary. Journal of Physiology, 2014, 592, 5129-5131.	1.3	9
34	Transcranial contrast-enhanced ultrasound in the rat brain reveals substantial hyperperfusion acutely post-stroke. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 939-953.	2.4	9
35	Reduced postâ€exercise muscle microvascular perfusion with compression is offset by increased muscle oxygen extraction: Assessment by contrastâ€enhanced ultrasound. FASEB Journal, 2021, 35, e21499. 	0.2	9
36	Prior exercise enhances skeletal muscle microvascular blood flow and mitigates microvascular flow impairments induced by a highâ€glucose mixed meal in healthy young men. Journal of Physiology, 2021, 599, 83-102.	1.3	9

MICHELLE ANNE KESKE

#	Article	IF	CITATIONS
37	Oral and intravenous glucose administration elicit opposing microvascular blood flow responses in skeletal muscle of healthy people: role of incretins. Journal of Physiology, 2022, 600, 1667-1681.	1.3	9
38	Acute, local infusion of angiotensin II impairs microvascular and metabolic insulin sensitivity in skeletal muscle. Cardiovascular Research, 2019, 115, 590-601.	1.8	8
39	Whole-Body Vibration Stimulates Microvascular Blood Flow in Skeletal Muscle. Medicine and Science in Sports and Exercise, 2021, 53, 375-383.	0.2	8
40	Metabolicâ€vascular coupling in skeletal muscle: A potential role for capillary pericytes?. Clinical and Experimental Pharmacology and Physiology, 2020, 47, 520-528.	0.9	7
41	Skeletal muscle microvascular perfusion responses to cuff occlusion and submaximal exercise assessed by contrastâ€enhanced ultrasound: The effect of age. Physiological Reports, 2020, 8, e14580.	0.7	7
42	Impaired postprandial skeletal muscle vascular responses to a mixed meal challenge in normoglycaemic people with a parent with type 2 diabetes. Diabetologia, 2022, 65, 216-225.	2.9	7
43	Determination of Skeletal Muscle Microvascular Flowmotion with Contrast-Enhanced Ultrasound. Ultrasound in Medicine and Biology, 2017, 43, 2013-2023.	0.7	6
44	Longitudinal Associations Between Fatâ€Derived Dietary Patterns and Early Markers of Cardiovascular Disease Risk in the UK Biobank Study. Journal of the American Heart Association, 2022, 11, .	1.6	6
45	Is vascular insulin resistance an early step in diet-induced whole-body insulin resistance?. Nutrition and Diabetes, 2022, 12, .	1.5	6
46	Enhancement of insulin-mediated rat muscle glucose uptake and microvascular perfusion by 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside. Cardiovascular Diabetology, 2015, 14, 91.	2.7	5
47	Perfusion controls muscle glucose uptake by altering the rate of glucose dispersion in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E311-E312.	1.8	4
48	Role of skeletal muscle perfusion and insulin resistance in the effect of dietary sodium on heart function in overweight. ESC Heart Failure, 2021, 8, 5304-5315.	1.4	4
49	Are the metabolic benefits of resistance training in type 2 diabetes linked to improvements in adipose tissue microvascular blood flow?. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E1242-E1250.	1.8	3
50	Rebuttal from Eugene J. Barrett, Michelle A. Keske, Stephen Rattigan and Etto C. Eringa. Journal of Physiology, 2014, 592, 5137-5138.	1.3	1