List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9198732/publications.pdf Version: 2024-02-01

YOSHIVA FUDUSANA

#	Article	IF	CITATIONS
1	Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. International Journal of Radiation Oncology Biology Physics, 1999, 44, 201-210.	0.8	781
2	Irradiation of Mixed Beam and Design of Spread-Out Bragg Peak for Heavy-Ion Radiotherapy. Radiation Research, 1997, 147, 78.	1.5	368
3	Platinum nanoparticles: a promising material for future cancer therapy?. Nanotechnology, 2010, 21, 085103.	2.6	345
4	Microdosimetric Measurements and Estimation of Human Cell Survival for Heavy-Ion Beams. Radiation Research, 2006, 166, 629-638.	1.5	256
5	Treatment planning for a scanned carbon beam with a modified microdosimetric kinetic model. Physics in Medicine and Biology, 2010, 55, 6721-6737.	3.0	233
6	Biophysical calculation of cell survival probabilities using amorphous track structure models for heavy-ion irradiation. Physics in Medicine and Biology, 2008, 53, 37-59.	3.0	141
7	Bystander effect induced by counted high‣ET particles in confluent human fibroblasts: a mechanistic study. FASEB Journal, 2003, 17, 1422-1427.	0.5	136
8	Contributions of Direct and Indirect Actions in Cell Killing by High-LET Radiations. Radiation Research, 2009, 171, 212-218.	1.5	133
9	Particle irradiation suppresses metastatic potential of cancer cells. Cancer Research, 2005, 65, 113-20.	0.9	133
10	Preclinical biological assessment of proton and carbon ion beams at Hyogo Ion Beam Medical Center. International Journal of Radiation Oncology Biology Physics, 2002, 54, 928-938.	0.8	127
11	Kill-painting of hypoxic tumours in charged particle therapy. Scientific Reports, 2015, 5, 17016.	3.3	124
12	Effects of Carbon Ion Beam on Putative Colon Cancer Stem Cells and Its Comparison with X-rays. Cancer Research, 2011, 71, 3676-3687.	0.9	113
13	Role of Gap Junctional Intercellular Communication in Radiation-Induced Bystander Effects in Human Fibroblasts. Radiation Research, 2003, 160, 318-323.	1.5	102
14	High-LET radiation enhanced apoptosis but not necrosis regardless of p53 status. International Journal of Radiation Oncology Biology Physics, 2004, 60, 591-597.	0.8	93
15	Repair Kinetics of DNA-DSB Induced by X-rays or Carbon Ions under Oxic and Hypoxic Conditions. Journal of Radiation Research, 2005, 46, 325-332.	1.6	85
16	Carbon-Ion Beam Irradiation Effectively Suppresses Migration and Invasion of Human Non–Small-Cell Lung Cancer Cells. International Journal of Radiation Oncology Biology Physics, 2009, 75, 475-481.	0.8	84
17	Biological Gain of Carbon-ion Radiotherapy for the Early Response of Tumor Growth Delay and against Early Response of Skin Reaction in Mice. Journal of Radiation Research, 2005, 46, 51-57.	1.6	81
18	Gadolinium-based nanoparticles to improve the hadrontherapy performances. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1601-1608.	3.3	80

#	Article	IF	CITATIONS
19	Cell Survival Fraction Estimation Based on the Probability Densities of Domain and Cell Nucleus Specific Energies Using Improved Microdosimetric Kinetic Models. Radiation Research, 2012, 178, 341-356.	1.5	79
20	Contribution of Indirect Action to Radiation-Induced Mammalian Cell Inactivation: Dependence on Photon Energy and Heavy-Ion LET. Radiation Research, 2006, 165, 703-712.	1.5	74
21	Heavy ion radiation up-regulates Cx43 and ameliorates arrhythmogenic substrates in hearts after myocardial infarction. Cardiovascular Research, 2006, 72, 412-421.	3.8	74
22	Association between G 2 -Phase Block and Repair of Radiation-Induced Chromosome Fragments in Human Lymphocytes. Radiation Research, 1999, 151, 670.	1.5	68
23	Relation between Lineal Energy Distribution and Relative Biological Effectiveness for Photon Beams according to the Microdosimetric Kinetic Model. Journal of Radiation Research, 2011, 52, 75-81.	1.6	65
24	Microdosimetric calculation of relative biological effectiveness for design of therapeutic proton beamsÂ. Journal of Radiation Research, 2013, 54, 485-493.	1.6	65
25	X-rays vs. carbon-ion tumor therapy: cytogenetic damage in lymphocytes. International Journal of Radiation Oncology Biology Physics, 2000, 47, 793-798.	0.8	64
26	Relative Biological Effectiveness of the 235 MeV Proton Beams at the National Cancer Center Hospital East. Journal of Radiation Research, 2001, 42, 79-89.	1.6	64
27	Quantitative Analysis of Isolated and Clustered DNA Damage Induced by Gamma-rays, Carbon Ion Beams, and Iron Ion Beams. Journal of Radiation Research, 2008, 49, 133-146.	1.6	62
28	Heavy-Ion Microbeam System at JAEA-Takasaki for Microbeam Biology. Journal of Radiation Research, 2008, 49, 71-82.	1.6	62
29	Medium-mediated Bystander Effects on HSG Cells Co-cultivated with Cells Irradiated by X-rays or a 290 MeV/u Carbon Beam. Journal of Radiation Research, 2001, 42, 305-316.	1.6	60
30	Nonhomologous End-Joining Repair Plays a More Important Role than Homologous Recombination Repair in Defining Radiosensitivity after Exposure to High-LET Radiation. Radiation Research, 2014, 182, 338-344.	1.5	60
31	LET Dependency of Heavy-ion Induced Apoptosis in V79 Cells. Journal of Radiation Research, 2000, 41, 163-175.	1.6	59
32	Heavy ion irradiation inhibits in vitro angiogenesis even at sublethal dose. Cancer Research, 2003, 63, 4253-7.	0.9	59
33	Enhanced radiobiological effects at the distal end of a clinical proton beam: in vitro study. Journal of Radiation Research, 2014, 55, 816-822.	1.6	57
34	Effectiveness of Monoenergetic and Spread-Out Bragg Peak Carbon-Ions for Inactivation of Various Normal and Tumour Human Cell Lines. Journal of Radiation Research, 2008, 49, 597-607.	1.6	55
35	Comparison of Biological Effectiveness of Carbon-Ion Beams in Japan and Germany. International Journal of Radiation Oncology Biology Physics, 2009, 73, 1545-1551.	0.8	55
36	Carbon Ion Irradiation Suppresses Metastatic Potential of Human Non-small Cell Lung Cancer A549 Cells through the Phosphatidylinositol-3-Kinase/Akt Signaling Pathway. Journal of Radiation Research, 2011, 52, 374-379.	1.6	53

#	Article	IF	CITATIONS
37	Radiobiological description of the LET dependence of the cell survival of oxic and anoxic cells irradiated by carbon ions. Journal of Radiation Research, 2013, 54, 18-26.	1.6	51
38	Clinical oxygen enhancement ratio of tumors in carbon ion radiotherapy: the influence of local oxygenation changes. Journal of Radiation Research, 2014, 55, 902-911.	1.6	50
39	Bystander effect on cell growth stimulation in neoplastic HSGc cells induced by heavy-ion irradiation. Radiation and Environmental Biophysics, 2003, 42, 183-187.	1.4	47
40	Relationship between Aberration Yield and Mitotic Delay in Human Lymphocytes Exposed to 200 MeV/u Fe-ions or X-rays. Journal of Radiation Research, 2002, 43, S175-S179.	1.6	45
41	Year-long upregulation of connexin43 in rabbit hearts by heavy ion irradiation. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1014-H1021.	3.2	45
42	Bystander Effect in Lymphoma Cells Vicinal to Irradiated Neoplastic Epithelial Cells: Nitric Oxide Is Involved. Journal of Radiation Research, 2004, 45, 97-103.	1.6	42
43	Relative Biological Effectiveness of 290 MeV/u Carbon Ions for the Growth Delay of a Radioresistant Murine Fibrosarcoma. Journal of Radiation Research, 2002, 43, 247-255.	1.6	40
44	High LET radiation enhances apoptosis in mutated <i>p53</i> cancer cells through Caspaseâ€9 activation. Cancer Science, 2008, 99, 1455-1460.	3.9	40
45	ATM-Dependent Hyper-Radiosensitivity in Mammalian Cells Irradiated by Heavy Ions. International Journal of Radiation Oncology Biology Physics, 2009, 75, 235-243.	0.8	38
46	Detection of DNA–protein crosslinks (DPCs) by novel direct fluorescence labeling methods: distinct stabilities of aldehyde and radiation-induced DPCs. Nucleic Acids Research, 2012, 40, e143-e143.	14.5	37
47	Exploration of `Over Kill Effect' of High-LET Ar- and Fe-ions by Evaluating the Fraction of Non-hit Cell and Interphase Death. Journal of Radiation Research, 2005, 46, 343-350.	1.6	36
48	Regulation of ATM in DNA double strand break repair accounts for the radiosensitivity in human cells exposed to high linear energy transfer ionizing radiation. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 670, 15-23.	1.0	36
49	Apparent absence of a proton beam dose rate effect and possible differences in RBE between Bragg peak and plateau. Medical Physics, 2010, 37, 5376-5381.	3.0	36
50	Gene expression analysis in human malignant melanoma cell lines exposed to carbon beams. International Journal of Radiation Biology, 2008, 84, 299-314.	1.8	35
51	Truly Incomplete and Complex Exchanges in Prematurely Condensed Chromosomes of Human Fibroblasts ExposedIn Vitroto Energetic Heavy Ions. Radiation Research, 2003, 160, 418-424.	1.5	34
52	DNA Damage Recognition Proteins Localize along Heavy Ion Induced Tracks in the Cell Nucleus. Journal of Radiation Research, 2008, 49, 645-652.	1.6	34
53	Analysis of cell-survival fractions for heavy-ion irradiations based on microdosimetric kinetic model implemented in the particle and heavy ion transport code system. Radiation Protection Dosimetry, 2011, 143, 491-496.	0.8	34
54	Action Spectrum Analysis of UVR Genotoxicity for Skin: The Border Wavelengths between UVA and UVB Can Bring Serious Mutation Loads to Skin. Journal of Investigative Dermatology, 2013, 133, 1850-1856.	0.7	34

#	Article	IF	CITATIONS
55	The Difference in LET and Ion Species Dependence for Induction of Initially Measured and Non-rejoined Chromatin Breaks in Normal Human Fibroblasts. Radiation Research, 2008, 170, 163-171.	1.5	33
56	OH Radicals from the Indirect Actions of X-Rays Induce Cell Lethality and Mediate the Majority of the Oxygen Enhancement Effect. Radiation Research, 2013, 180, 514-523.	1.5	33
57	Microbeams of Heavy Charged Particles. Uchu Seibutsu Kagaku, 2004, 18, 235-240.	0.3	33
58	Cell cycle suspension: A novel process lurking in G ₂ arrest. Cell Cycle, 2011, 10, 1468-1476.	2.6	32
59	RAC2-P38 MAPK-dependent NADPH oxidase activity is associated with the resistance of quiescent cells to ionizing radiation. Cell Cycle, 2017, 16, 113-122.	2.6	31
60	Relative Biological Effectiveness of Accelerated Heavy Ions for Induction of Morphological Transformation in Syrian Hamster Embryo Cells Journal of Radiation Research, 1998, 39, 193-201.	1.6	30
61	Analysis of Cytogenetic Damage in Rice Seeds Induced by Energetic Heavy Ions On-ground and After Spaceflight. Journal of Radiation Research, 2006, 47, 273-278.	1.6	30
62	Protective Effects of Melatonin Against Low- and High-LET Irradiation. Journal of Radiation Research, 2006, 47, 175-181.	1.6	30
63	Evaluation of SCCVII tumor cell survival in clamped and non-clamped solid tumors exposed to carbon-ion beams in comparison to X-rays. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2013, 756, 146-151.	1.7	29
64	Response of Mouse Intestine after Single and Fractionated Irradiation with Accelerated Carbon Ions with a Spread-Out Bragg Peak. Radiation Research, 1997, 148, 168.	1.5	28
65	Role of isolated and clustered DNA damage and the post-irradiating repair process in the effects of heavy ion beam irradiation. Journal of Radiation Research, 2015, 56, 446-455.	1.6	27
66	Enhanced DNA double-strand break repair of microbeam targeted A549 lung carcinoma cells by adjacent WI38 normal lung fibroblast cells via bi-directional signaling. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2017, 803-805, 1-8.	1.0	27
67	High LET heavy ion radiation induces lower numbers of initial chromosome breaks with minimal repair than low LET radiation in normal human cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2008, 652, 95-101.	1.7	26
68	Role of autophagy in high linear energy transfer radiationâ€induced cytotoxicity to tumor cells. Cancer Science, 2014, 105, 770-778.	3.9	26
69	Determination of the relative biological effectiveness and oxygen enhancement ratio for micronuclei formation using high-LET radiation in solid tumor cells: An in vitro and in vivo study. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2015, 793, 41-47.	1.7	26
70	Inducibility of Ventricular Arrhythmia 1 Year Following Treatment with Heavy Ion Irradiation in Dogs with Myocardial Infarction. PACE - Pacing and Clinical Electrophysiology, 2017, 40, 379-390.	1.2	26
71	The dependence of p53 on the radiation enhancement of thermosensitivity at different let. International Journal of Radiation Oncology Biology Physics, 2000, 47, 489-494.	0.8	25
72	Influence of the Shielding on the Induction of Chromosomal Aberrations in Human Lymphocytes Exposed to High-energy Iron Ions. Journal of Radiation Research, 2002, 43, S107-S111.	1.6	25

#	Article	IF	CITATIONS
73	Cell biological basis for combination radiotherapy using heavy-ion beams and high-energy X-rays. Radiotherapy and Oncology, 2004, 71, 207-211.	0.6	24
74	Co-visualization of DNA damage and ion traversals in live mammalian cells using a fluorescent nuclear track detector. Journal of Radiation Research, 2015, 56, 360-365.	1.6	24
75	Dependence of Induction of Interphase Death of Chinese Hamster Ovary Cells Exposed to Accelerated Heavy Ions on Linear Energy Transfer. Radiation Research, 1997, 148, 449.	1.5	23
76	Monte Carlo simulation of radial distribution of DNA strand breaks along the C and Ne ion paths. Radiation Protection Dosimetry, 2011, 143, 186-190.	0.8	23
77	The complexity of DNA double strand break is a crucial factor for activating ATR signaling pathway for G2/M checkpoint regulation regardless of ATM function. DNA Repair, 2015, 25, 72-83.	2.8	23
78	Radiation-induced growth inhibition in transplanted human tongue carcinomas with different p53 gene status. Anticancer Research, 2002, 22, 2037-43.	1.1	23
79	DNA Fragmentation Induced in Human Fibroblasts by Accelerated56Fe Ions of Differing Energies. Radiation Research, 2006, 165, 713-720.	1.5	22
80	Biological Intercomparison Using Gut Crypt Survivals for Proton and Carbon-Ion Beams. Journal of Radiation Research, 2007, 48, A75-A80.	1.6	22
81	Radiobiologic Significance of Response of Intratumor Quiescent Cells In Vivo to Accelerated Carbon Ion Beams Compared With γ-Rays and Reactor Neutron Beams. International Journal of Radiation Oncology Biology Physics, 2008, 70, 221-228.	0.8	21
82	Depression of p53-independent Akt survival signals in human oral cancer cells bearing mutated p53 gene after exposure to high-LET radiation. Biochemical and Biophysical Research Communications, 2012, 423, 654-660.	2.1	21
83	RBE and OER within the spread-out Bragg peak for proton beam therapy: in vitro study at the Proton Medical Research Center at the University of Tsukuba. Journal of Radiation Research, 2014, 55, 1028-1032.	1.6	21
84	Arpc1bGene Is a Candidate Prediction Marker for Choroidal Malignant Melanomas Sensitive to Radiotherapy. , 2006, 47, 2300.		20
85	Induction of DNA–protein cross-links by ionizing radiation and their elimination from the genome. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2015, 771, 45-50.	1.0	20
86	Tissue-dependent somaclonal mutation frequencies and spectra enhanced by ion beam irradiation in chrysanthemum. Euphytica, 2015, 202, 333-343.	1.2	20
87	Radiosensitization by Hyperthermia in the Chicken B-Lymphocyte Cell Line DT40 and its Derivatives Lacking Nonhomologous End Joining and/or Homologous Recombination Pathways of DNA Double-Strand Break Repair. Radiation Research, 2004, 162, 433-441.	1.5	19
88	Radiobiological Characterization of Proton Beam at the National Cancer Center in Korea. Journal of Radiation Research, 2008, 49, 509-515.	1.6	19
89	Microdosimetric study on influence of low energy photons on relative biological effectiveness under therapeutic conditions using 6 MV linac. Medical Physics, 2011, 38, 4714-4722.	3.0	19
90	Differential effects of p53 on bystander phenotypes induced by gamma ray and high LET heavy ion radiation. Life Sciences in Space Research, 2014, 1, 53-59.	2.3	19

#	Article	IF	CITATIONS
91	Time Course of Reoxygenation in Experimental Murine Tumors after Carbon-beam and X-ray Irradiation. Journal of Radiation Research, 2001, 42, 131-141.	1.6	18
92	A New Method for the Simultaneous Detection of Mammalian Cells and Ion Tracks on a Surface of CR-39. Journal of Radiation Research, 2007, 48, 255-261.	1.6	18
93	Irradiation system of ions (H–Xe) for biological studies near the Bragg peak. Review of Scientific Instruments, 2005, 76, 114302.	1.3	17
94	Visualization of Heavy Ion Tracks by Labeling 3'-OH Termini of Induced DNA Strand Breaks. Journal of Radiation Research, 2011, 52, 433-440.	1.6	17
95	In Vivo Radiobiological Characterization of Proton Beam at the National Cancer Center in Korea: Effect of the Chk2 Mutation. International Journal of Radiation Oncology Biology Physics, 2011, 79, 559-562.	0.8	17
96	DNA Damage Response Proteins and Oxygen Modulate Prostaglandin E2 Growth Factor Release in Response to Low and High LET Ionizing Radiation. Frontiers in Oncology, 2015, 5, 260.	2.8	17
97	PU-H71, a novel Hsp90 inhibitor, as a potential cancer-specific sensitizer to carbon-ion beam therapy. Journal of Radiation Research, 2016, 57, 572-575.	1.6	17
98	Metformin enhances the radiosensitivity of human liver cancer cells to Î ³ -rays and carbon ion beams. Oncotarget, 2016, 7, 80568-80578.	1.8	17
99	Comment on â€~Therapeutic application of metallic nanoparticles combined with particle-induced x-ray emission effect'. Nanotechnology, 2012, 23, 078001.	2.6	15
100	Number of Fe Ion Traversals Through a Cell Nucleus for Mammalian Cell Inactivation Near the Bragg Peak. Journal of Radiation Research, 2005, 46, 415-424.	1.6	14
101	Radioprotection by DMSO in nitrogen-saturated mammalian cells exposed to helium ion beams. Radiation Physics and Chemistry, 2009, 78, 1175-1178.	2.8	14
102	Dependence of the bystander effect for micronucleus formation on dose of heavy-ion radiation in normal human fibroblasts. Radiation Protection Dosimetry, 2015, 166, 152-156.	0.8	14
103	Mutagenic Effect of Three Ion Beams on Rice and Identification of Heritable Mutations by Whole Genome Sequencing. Plants, 2020, 9, 551.	3.5	14
104	Analysis of Unrejoined Chromosomal Breakage in Human Fibroblast Cells Exposed to Low- and High-LET Radiation. Journal of Radiation Research, 2002, 43, S181-S185.	1.6	13
105	Effect of a Hypoxic Cell Sensitizer Doranidazole on the Radiation-induced Apoptosis of Mouse L5178Y Lymphoma Cells. Journal of Radiation Research, 2002, 43, 161-161.	1.6	13
106	Repair of Skin Damage During Fractionated Irradiation with Gamma Rays and Low-LET Carbon Ions. Journal of Radiation Research, 2006, 47, 167-174.	1.6	13
107	Comparison of DNA Breaks at Entrance Channel and Bragg Peak Induced by Fast C6+ Ions. Journal of Radiation Research, 2010, 51, 21-26.	1.6	13
108	Quantitative proteomic analysis for radiation-induced cell cycle suspension in 92-1 melanoma cell line. Journal of Radiation Research, 2013, 54, 649-662.	1.6	13

#	Article	IF	CITATIONS
109	Effects of shielding on the induction of 53BP1 foci and micronuclei after Fe ion exposures. Journal of Radiation Research, 2014, 55, 10-16.	1.6	13
110	Comparative analysis of G2 arrest after irradiation with 75 keV carbon-ion beams and 137Cs Î ³ -rays in a human lymphoblastoid cell line. Cancer Detection and Prevention, 2003, 27, 222-228.	2.1	12
111	Misrepair of DNA double-strand breaks after exposure to heavy-ion beams causes a peak in the LET–RBE relationship with respect to cell killing in DT40 cells. Journal of Radiation Research, 2013, 54, 1029-1035.	1.6	12
112	ATR signaling cooperates with ATM in the mechanism of low dose hypersensitivity induced by carbon ion beam. DNA Repair, 2015, 34, 1-8.	2.8	12
113	Involvement of gap junctional intercellular communication in the bystander effect induced by broad-beam or microbeam heavy ions. Nuclear Instruments & Methods in Physics Research B, 2006, 251, 177-181.	1.4	11
114	The radiosensitivity of total and quiescent cell populations in solid tumors to 290 MeV/u carbon ion beam irradiation <i>in vivo</i> . Acta Oncológica, 2008, 47, 1087-1093.	1.8	11
115	Induction of Micronuclei in Germinating Onion Seed Root Tip Cells Irradiated with High Energy Heavy Ions. Journal of Radiation Research, 2010, 51, 315-323.	1.6	11
116	Relative biological effectiveness of therapeutic proton beams for HSG cells at Japanese proton therapy facilities. Journal of Radiation Research, 2014, 55, 812-815.	1.6	11
117	Time Course and Spacial Distribution of UV Effects on Human Skin in Organ Culture. Journal of Radiation Research, 2008, 49, 269-277.	1.6	10
118	Radiosensitization by Inhibiting Survivin in Human Hepatoma HepG2 Cells to High-LET Radiation. Journal of Radiation Research, 2011, 52, 335-341.	1.6	10
119	Antimetastatic Effects of Carbon-Ion Beams on Malignant Melanomas. Radiation Research, 2018, 190, 412.	1.5	10
120	Scaling parameter of the lethal effect of mammalian cells based on radiation-induced OH radicals: effectiveness of direct action in radiation therapy. Journal of Radiation Research, 2021, 62, 86-93.	1.6	10
121	Cell Cycle and LET Dependence for Radiation-induced Mutation. A Possible Mechanism for Reversed Dose-rate Effect Journal of Radiation Research, 1999, 40, 45-52.	1.6	9
122	Sper/NO-induced reversible proliferation inhibition and cycle arrests associated with a micronucleus induction in HSG cells. Nitric Oxide - Biology and Chemistry, 2003, 8, 83-88.	2.7	9
123	Dosimetry for a microbeam array generated by synchrotron radiation at SPring-8. European Journal of Radiology, 2008, 68, S114-S117.	2.6	9
124	Absence of <i>Ku70</i> Gene Obliterates X-Ray-Induced <i>lacZ</i> Mutagenesis of Small Deletions in Mouse Tissues. Radiation Research, 2008, 170, 216-223.	1.5	9
125	Rejoining kinetics of G1-PCC breaks induced by different heavy-ion beams with a similar LET value. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2010, 701, 47-51.	1.7	9
126	Biological effects of carbon ion beams with various LETs on budding yeast Saccharomyces cerevisiae. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2018, 810, 45-51.	1.0	9

#	Article	IF	CITATIONS
127	Biological effects of ion beam irradiation on perennial gentian and apple. Plant Biotechnology, 2018, 35, 249-257.	1.0	9
128	Both irradiated and bystander effects link with DNA repair capacity and the linear energy transfer. Life Sciences, 2019, 222, 228-234.	4.3	9
129	Induction of Chromatin Damage and Distribution of Isochromatid Breaks in Human Fibroblast Cells Exposed to Heavy Ions. Journal of Radiation Research, 2002, 43, S169-S173.	1.6	8
130	Effect of Gap Junctional Intercellular Communication on Radiation Responses in Neoplastic Human Cells. Radiation Research, 2007, 167, 283-288.	1.5	8
131	Two Major Factors Involved in the Reverse Dose-rate Effect for Somatic Mutation Induction are the Cell Cycle Position and LET Value. Journal of Radiation Research, 2009, 50, 441-448.	1.6	8
132	Simulated studies on the biological effects of space radiation on quiescent human fibroblasts. Advances in Space Research, 2013, 52, 1314-1319.	2.6	8
133	Comparison of the repair of potentially lethal damage after low- and high-LET radiation exposure, assessed from the kinetics and fidelity of chromosome rejoining in normal human fibroblasts. Journal of Radiation Research, 2013, 54, 989-997.	1.6	8
134	G2-M phase-correlative bystander effects are co-mediated by DNA-PKcs and ATM after carbon ion irradiation. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2016, 795, 1-6.	1.7	8
135	Action spectra of apoptosis induction and reproductive cell death in L5178Y cells in the UV-B region. Photochemical and Photobiological Sciences, 2004, 3, 268.	2.9	7
136	LET dependence of the formation of oxidative damage 8-hydroxy-2′-deoxyguanosine (8-OHdG) in 2′-deoxyguanosine aqueous solution irradiated with heavy ions. Radiation Physics and Chemistry, 2009, 78, 1207-1210.	2.8	7
137	High LET Radiation Enhances Nocodazole Induced Cell Death in HeLa Cells through Mitotic Catastrophe and Apoptosis. Journal of Radiation Research, 2011, 52, 481-489.	1.6	7
138	Comment on "Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles―[Appl. Phys. Lett. 98, 193702 (2011)]. Applied Physics Letters, 2012, 100, 026101.	3.3	7
139	Chromosome aberrations in normal human fibroblasts analyzed in G0/G1 and G2/M phases after exposure in G0 to radiation with different linear energy transfer (LET). Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2013, 756, 101-107.	1.7	7
140	Relative clinical effectiveness of carbon ion radiotherapy: theoretical modelling for H&N tumours. Journal of Radiation Research, 2015, 56, 639-645.	1.6	7
141	Equivalency of the quality of sublethal lesions after photons and high-linear energy transfer ion beams. Journal of Radiation Research, 2017, 58, 803-808.	1.6	7
142	The Potential Application of Heavy Ion Beams in the Treatment of Arrhythmia: The Role of Radiation-Induced Modulation of Connexin43 and the Sympathetic Nervous System. International Journal of Particle Therapy, 2018, 5, 140-150.	1.8	7
143	Relationship between LET and RBE values for Escherichia coli determined using carbon ion beams from the TIARA cyclotron and HIMAC synchrotron Journal of General and Applied Microbiology, 1997, 43, 175-177.	0.7	7
144	Models for Mixed Irradiation with a `Reciprocal-Time' Pattern of the Repair Function. Journal of Radiation Research, 2002, 43, 257-267.	1.6	6

#	Article	IF	CITATIONS
145	Changes in arrhythmogenic properties and fiveâ€year prognosis after carbonâ€ion radiotherapy in patients with mediastinum cancer. Annals of Noninvasive Electrocardiology, 2018, 23, .	1.1	6
146	Identification and characterization of inheritable structural variations induced by ion beam radiations in rice. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2021, 823, 111757.	1.0	6
147	Analysis of complex DNA lesions generated by heavy ion beams. Nucleic Acids Symposium Series, 2007, 51, 221-222.	0.3	5
148	Responses of total and quiescent cell populations in solid tumors to carbon ion beam irradiation (290) Tj ETQq0	0 0 rgBT /0 0 .9	Overlock 10 1
149	Gene Expression Associated with DNA-Dependent Protein Kinase Activity under Normoxia, Hypoxia, and Reoxygenation. Journal of Radiation Research, 2011, 52, 464-471.	1.6	5
150	Overexpression of Ras-Related C3 Botulinum Toxin Substrate 2 Radiosensitizes Melanoma Cells <i>In Vitro</i> and <i>In Vivo</i> . Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-10.	4.0	5
151	ESTIMATION OF RBE VALUES FOR CARBON-ION BEAMS IN THE WIDE DOSE RANGE USING MULTICELLULAR SPHEROIDS. Radiation Protection Dosimetry, 2019, 183, 45-49.	0.8	5
152	Cell killing and mutation induction by heavy ion beams. International Journal of Molecular Medicine, 2001, 7, 509-13.	4.0	4
153	Hadrontherapy enhanced by combination with heavy atoms. , 2016, , 471-503.		4
154	Analysis of DNA damage generated by high-energy particles. Nucleic Acids Symposium Series, 2004, 48, 145-146.	0.3	2
155	The PCC assay can be used to predict radiosensitivity in biopsy cultures irradiated with different types of radiation. Oncology Reports, 2006, 16, 1293.	2.6	2
156	Intracellular reactions affecting 2-amino-4-([11C]methylthio)butyric acid ([11C]methionine) response to carbon ion radiotherapy in C10 glioma cells. Nuclear Medicine and Biology, 2009, 36, 985-991.	0.6	2
157	Comparison of the Kinetics of Radiation-Induced Apoptosis in DT40 Cells Irradiated with Low and High Doses of X Rays. Radiation Research, 2010, 173, 645-650.	1.5	2
158	Combination of agents modifying effects in hadrontherapy: modelization of the role of HO° free radicals. International Journal of Radiation Biology, 2020, 96, 622-627.	1.8	2
159	Dose–Response Effect of Charged Carbon Beam on Normal Rat Retina Assessed by Electroretinography. International Journal of Radiation Oncology Biology Physics, 2010, 78, 1532-1540.	0.8	1
160	é‡ç²åç·šç§åº"ã«ã, ã, ‹å¿få®ä,®ãf£ãffãf—çµê•蛋ç™1⁄2ï1⁄4^Cx43ï1⁄4‰ç™ºç¾äº¢é€²ã•抗ä,œ•´è,,°ä1⁄2œç"". Jap	oar æse Jou	rn a l of Electro

161	Radioprotective activities of beer administration for radiation-induced acute toxicity in mice. Radiotherapy and Oncology, 2004, 73, S127-S129.	0.6	0
162	Editorial. Journal of Radiation Research, 2012, 53, 505-505.	1.6	0

#	Article	IF	CITATIONS
163	Lethal DNA Lesions Caused by Direct and Indirect Actions of X rays are Repaired via Different DSB Repair Pathways under Aerobic and Anoxic Conditions. Radiation Research, 2021, 195, 441-451.	1.5	Ο
164	Application of Quantum Beam for Cancer Therapy. IEEJ Transactions on Electronics, Information and Systems, 2017, 137, 390-393.	0.2	0
165	Amino acid transport system - A substrate predicts the therapeutic effects of particle radiotherapy. PLoS ONE, 2017, 12, e0173096.	2.5	Ο
166	8.2.9 Expansion of Heavy-Ion Beam Application —Ion Beam Breeding and Non-invasive Arrhythmia Treatment—. Radioisotopes, 2019, 68, 749-758.	0.2	0