## Anthony P West

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9198641/publications.pdf Version: 2024-02-01



ANTHONY D W/FST

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature, 2020, 584, 437-442.                                                                                                                                  | 27.8 | 1,742     |
| 2  | SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature, 2020, 588, 682-687.                                                                                                                                | 27.8 | 1,346     |
| 3  | Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent<br>Features of Antibodies. Cell, 2020, 182, 828-842.e16.                                                                                | 28.9 | 724       |
| 4  | Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature, 2015, 522, 487-491.                                                                                                                    | 27.8 | 665       |
| 5  | Antibody 10-1074 suppresses viremia in HIV-1-infected individuals. Nature Medicine, 2017, 23, 185-191.                                                                                                                                | 30.7 | 399       |
| 6  | Combination therapy with anti-HIV-1 antibodies maintains viral suppression. Nature, 2018, 561, 479-484.                                                                                                                               | 27.8 | 392       |
| 7  | Increasing the Potency and Breadth of an HIV Antibody by Using Structure-Based Rational Design.<br>Science, 2011, 334, 1289-1293.                                                                                                     | 12.6 | 345       |
| 8  | Structural Insights on the Role of Antibodies in HIV-1 Vaccine and Therapy. Cell, 2014, 156, 633-648.                                                                                                                                 | 28.9 | 318       |
| 9  | Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors. Cell, 2015, 161, 1280-1292.                                                                                                          | 28.9 | 305       |
| 10 | Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice.<br>Science, 2021, 371, 735-741.                                                                                                        | 12.6 | 305       |
| 11 | Recurrent Potent Human Neutralizing Antibodies to Zika Virus in Brazil and Mexico. Cell, 2017, 169, 597-609.e11.                                                                                                                      | 28.9 | 279       |
| 12 | Engineering HIV envelope protein to activate germline B cell receptors of broadly neutralizing anti-CD4 binding site antibodies. Journal of Experimental Medicine, 2013, 210, 655-663.                                                | 8.5  | 275       |
| 13 | HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1. Science, 2016, 352, 997-1001.                                                                                                             | 12.6 | 263       |
| 14 | Crystal Structure and Immunoglobulin G Binding Properties of the Human Major Histocompatibility<br>Complex-Related Fc Receptor,. Biochemistry, 2000, 39, 9698-9708.                                                                   | 2.5  | 233       |
| 15 | Structural basis for germ-line gene usage of a potent class of antibodies targeting the CD4-binding site of HIV-1 gp120. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2083-90.        | 7.1  | 212       |
| 16 | Antibody 8ANC195 Reveals a Site of Broad Vulnerability on the HIV-1 Envelope Spike. Cell Reports, 2014, 7, 785-795.                                                                                                                   | 6.4  | 199       |
| 17 | Natively glycosylated HIV-1 Env structure reveals new mode for antibody recognition of the CD4-binding site. Nature Structural and Molecular Biology, 2016, 23, 906-915.                                                              | 8.2  | 188       |
| 18 | Examination of the contributions of size and avidity to the neutralization mechanisms of the anti-HIV antibodies b12 and 4E10. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7385-7390. | 7.1  | 146       |

ANTHONY P WEST

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. Nature, 2019, 570, 468-473.                                                                                                                                | 27.8 | 145       |
| 20 | Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. Science Translational Medicine, 2017, 9, .                                                                            | 12.4 | 128       |
| 21 | The Chicken Yolk Sac IgY Receptor, a Functional Equivalent of the Mammalian MHC-Related Fc<br>Receptor, Is a Phospholipase A2 Receptor Homolog. Immunity, 2004, 20, 601-610.                                                              | 14.3 | 126       |
| 22 | Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models.<br>Science, 2022, 377, .                                                                                                                   | 12.6 | 120       |
| 23 | Intra-Spike Crosslinking Overcomes Antibody Evasion by HIV-1. Cell, 2015, 160, 433-446.                                                                                                                                                   | 28.9 | 109       |
| 24 | Computational analysis of anti–HIV-1 antibody neutralization panel data to identify potential<br>functional epitope residues. Proceedings of the National Academy of Sciences of the United States of<br>America, 2013, 110, 10598-10603. | 7.1  | 106       |
| 25 | Restricting HIV-1 pathways for escape using rationally designed anti–HIV-1 antibodies. Journal of<br>Experimental Medicine, 2013, 210, 1235-1249.                                                                                         | 8.5  | 85        |
| 26 | Structural characterization of a highly-potent V3-glycan broadly neutralizing antibody bound to natively-glycosylated HIV-1 envelope. Nature Communications, 2018, 9, 1251.                                                               | 12.8 | 85        |
| 27 | Broad and Potent Neutralizing Antibodies Recognize the Silent Face of the HIV Envelope. Immunity, 2019, 50, 1513-1529.e9.                                                                                                                 | 14.3 | 85        |
| 28 | Broad cross-reactivity across sarbecoviruses exhibited by a subset of COVID-19 donor-derived neutralizing antibodies. Cell Reports, 2021, 36, 109760.                                                                                     | 6.4  | 80        |
| 29 | Enhanced HIV-1 immunotherapy by commonly arising antibodies that target virus escape variants.<br>Journal of Experimental Medicine, 2014, 211, 2361-2372.                                                                                 | 8.5  | 79        |
| 30 | B cell genomics behind cross-neutralization of SARS-CoV-2 variants and SARS-CoV. Cell, 2021, 184, 3205-3221.e24.                                                                                                                          | 28.9 | 73        |
| 31 | Structural basis for germline antibody recognition of HIV-1 immunogens. ELife, 2016, 5, .                                                                                                                                                 | 6.0  | 68        |
| 32 | Detection and characterization of the SARS-CoV-2 lineage B.1.526 in New York. Nature Communications, 2021, 12, 4886.                                                                                                                      | 12.8 | 65        |
| 33 | Asymmetric recognition of HIV-1 Envelope trimer by V1V2 loop-targeting antibodies. ELife, 2017, 6, .                                                                                                                                      | 6.0  | 52        |
| 34 | Design and Expression of a Dimeric Form of Human Immunodeficiency Virus Type 1 Antibody 2G12 with<br>Increased Neutralization Potency. Journal of Virology, 2009, 83, 98-104.                                                             | 3.4  | 49        |
| 35 | Antibody engineering for increased potency, breadth and half-life. Current Opinion in HIV and AIDS, 2015, 10, 151-159.                                                                                                                    | 3.8  | 46        |
| 36 | Electron tomography visualization of HIV-1 fusion with target cells using fusion inhibitors to trap the pre-hairpin intermediate. ELife, 2020, 9, .                                                                                       | 6.0  | 37        |

ANTHONY P WEST

| #  | Article                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Structural Basis for Enhanced HIV-1 Neutralization by a Dimeric Immunoglobulin G Form of the Glycan-Recognizing Antibody 2G12. Cell Reports, 2013, 5, 1443-1455.                 | 6.4  | 36        |
| 38 | Evaluation of CD4-CD4i Antibody Architectures Yields Potent, Broadly Cross-Reactive Anti-Human<br>Immunodeficiency Virus Reagents. Journal of Virology, 2010, 84, 261-269.       | 3.4  | 34        |
| 39 | Anti-PolyQ Antibodies Recognize a Short PolyQ Stretch in Both Normal and Mutant Huntingtin Exon 1.<br>Journal of Molecular Biology, 2015, 427, 2507-2519.                        | 4.2  | 31        |
| 40 | Single-Chain Fv-Based Anti-HIV Proteins: Potential and Limitations. Journal of Virology, 2012, 86, 195-202.                                                                      | 3.4  | 29        |
| 41 | Sequential immunization of macaques elicits heterologous neutralizing antibodies targeting the V3-glycan patch of HIV-1 Env. Science Translational Medicine, 2021, 13, eabk1533. | 12.4 | 27        |
| 42 | Neutralization Properties of Simian Immunodeficiency Viruses Infecting Chimpanzees and Gorillas.<br>MBio, 2015, 6, .                                                             | 4.1  | 25        |
| 43 | Broad and potent neutralizing human antibodies to tick-borne flaviviruses protect mice from disease.<br>Journal of Experimental Medicine, 2021, 218, .                           | 8.5  | 25        |
| 44 | Structure of an HIV-2 gp120 in Complex with CD4. Journal of Virology, 2016, 90, 2112-2118.                                                                                       | 3.4  | 19        |
| 45 | A broadly neutralizing macaque monoclonal antibody against the HIV-1 V3-Glycan patch. ELife, 2020, 9, .                                                                          | 6.0  | 10        |