Xin Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9198611/publications.pdf

Version: 2024-02-01

31	691	567281	552781
papers	citations	h-index	g-index
32	32	32	1182
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hyaluronic Acid-Based Nanogel–Drug Conjugates with Enhanced Anticancer Activity Designed for the Targeting of CD44-Positive and Drug-Resistant Tumors. Bioconjugate Chemistry, 2013, 24, 658-668.	3.6	171
2	Targeted Nanogel Conjugate for Improved Stability and Cellular Permeability of Curcumin: Synthesis, Pharmacokinetics, and Tumor Growth Inhibition. Molecular Pharmaceutics, 2014, 11, 3112-3122.	4.6	72
3	Increasing the Permeability of the Blood–brain Barrier in Three Different Models <i>inÂvivo</i> . CNS Neuroscience and Therapeutics, 2015, 21, 568-574.	3.9	47
4	GSK3 inhibitor-loaded osteotropic Pluronic hydrogel effectively mitigates periodontal tissue damage associated with experimental periodontitis. Biomaterials, 2020, 261, 120293.	11.4	47
5	Glucocorticoid-induced delayed fracture healing and impaired bone biomechanical properties in mice. Clinical Interventions in Aging, 2018, Volume 13, 1465-1474.	2.9	38
6	Micelle-Forming Dexamethasone Prodrug Attenuates Nephritis in Lupus-Prone Mice without Apparent Glucocorticoid Side Effects. ACS Nano, 2018, 12, 7663-7681.	14.6	36
7	Macromolecular glucocorticoid prodrug improves the treatment of dextran sulfate sodium-induced mice ulcerative colitis. Clinical Immunology, 2015, 160, 71-81.	3.2	31
8	Bone-targeting liposome formulation of Salvianic acid A accelerates the healing of delayed fracture Union in Mice. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2271-2282.	3.3	30
9	Pharmacokinetic and Biodistribution Studies of HPMA Copolymer Conjugates in an Aseptic Implant Loosening Mouse Model. Molecular Pharmaceutics, 2017, 14, 1418-1428.	4.6	26
10	Thermoresponsive Hydrogel-Based Local Delivery of Simvastatin for the Treatment of Periodontitis. Molecular Pharmaceutics, 2021, 18, 1992-2003.	4.6	22
11	Structural optimization of HPMA copolymer-based dexamethasone prodrug for improved treatment of inflammatory arthritis. Journal of Controlled Release, 2020, 324, 560-573.	9.9	22
12	Thermoresponsive polymeric dexamethasone prodrug for arthritis pain. Journal of Controlled Release, 2021, 339, 484-497.	9.9	22
13	Development of a Janus Kinase Inhibitor Prodrug for the Treatment of Rheumatoid Arthritis. Molecular Pharmaceutics, 2018, 15, 3456-3467.	4.6	20
14	HPMA–Copolymer Nanocarrier Targets Tumor-Associated Macrophages in Primary and Metastatic Breast Cancer. Molecular Cancer Therapeutics, 2017, 16, 2701-2710.	4.1	19
15	The Evaluation of Therapeutic Efficacy and Safety Profile of Simvastatin Prodrug Micelles in a Closed Fracture Mouse Model. Pharmaceutical Research, 2016, 33, 1959-1971.	3. 5	16
16	New Monoterpenoid Indoles with Osteoclast Activities from Gelsemium elegans. Molecules, 2021, 26, 7457.	3.8	10
17	A Macromolecular Janus Kinase (JAK) Inhibitor Prodrug Effectively Ameliorates Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice. Pharmaceutical Research, 2019, 36, 64.	3.5	9
18	C23 promotes tumorigenesis via suppressing p53 activity. Oncotarget, 2016, 7, 58274-58285.	1.8	9

#	Article	IF	Citations
19	Low level of swiprosin-1/EFhd2 in vestibular nuclei of spontaneously hypersensitive motion sickness mice. Scientific Reports, 2017, 7, 40986.	3.3	8
20	Genus Alangium – A review on its traditional uses, phytochemistry and pharmacological activities. Fìtoterapìâ, 2020, 147, 104773.	2.2	8
21	Dexamethasone prodrug nanomedicine (ZSJ-0228) treatment significantly reduces lupus nephritis in mice without measurable side effects — A 5-month study. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 31, 102302.	3.3	7
22	Chemical Constituents of Sophora tonkinensis. Chemistry of Natural Compounds, 2020, 56, 1140-1142.	0.8	5
23	The Development of a Macromolecular Analgesic for Arthritic Pain. Molecular Pharmaceutics, 2019, 16, 1234-1244.	4.6	4
24	Head-to-head comparative pharmacokinetic and biodistribution (PK/BD) study of two dexamethasone prodrug nanomedicines on lupus-prone NZB/WF1 mice. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102266.	3.3	4
25	Preclinical Dose-Escalation Study of ZSJ-0228, a Polymeric Dexamethasone Prodrug, in the Treatment of Murine Lupus Nephritis. Molecular Pharmaceutics, 2021, 18, 4188-4197.	4.6	2
26	Identification and Analysis of MYB Gene Family for Discovering Potential Regulators Responding to Abiotic Stresses in Curcuma wenyujin. Frontiers in Genetics, 2022, 13, 894928.	2.3	2
27	A New Isoflavonoid from Roots of Alangium chinense. Chemistry of Natural Compounds, 2021, 57, 641-644.	0.8	1
28	Polymeric dexamethasone prodrugs attenuate lupus nephritis in MRL/lpr mice with reduced glucocorticoid toxicity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 44, 102579.	3.3	1
29	Nanomedicine for the Treatment of Musculoskeletal Diseases. Methods in Pharmacology and Toxicology, 2016, , 389-412.	0.2	0
30	Two new phenol compounds from roots of <i>Ardisia crenata</i> . Natural Product Research, 2022, , 1-4.	1.8	0
31	Two new amides from the seeds of <i>Coix lacryma-jobi</i> var. lacryma-jobi. Natural Product Research, 0, , 1-6.	1.8	0