
Muhammad Saghir Khan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9198526/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of phosphate-solubilizing microorganisms in sustainable agriculture — A review. Agronomy for Sustainable Development, 2007, 27, 29-43.	2.2	654
2	Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environmental Chemistry Letters, 2009, 7, 1-19.	8.3	474
3	Plant growth promotion by phosphate solubilizing fungi – current perspective. Archives of Agronomy and Soil Science, 2010, 56, 73-98.	1.3	402
4	Synergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field-grown chickpea. Journal of Plant Nutrition and Soil Science, 2007, 170, 283-287.	1.1	183
5	Inhibition of growth and biofilm formation of clinical bacterial isolates by NiO nanoparticles synthesized from Eucalyptus globulus plants. Microbial Pathogenesis, 2017, 111, 375-387.	1.3	139
6	The COVIDâ€19 pandemic: A rapid global response for children with cancer from SIOP, COG, SIOPâ€E, SIOPâ€PODC, IPSO, PROS, CCI, and St Jude Global. Pediatric Blood and Cancer, 2020, 67, e28409.	0.8	113
7	Toxicity assessment of metal oxide nano-pollutants on tomato (Solanum lycopersicon): A study on growth dynamics and plant cell death. Environmental Pollution, 2018, 240, 802-816.	3.7	112
8	Mitochondrial and Chromosomal Damage Induced by Oxidative Stress in Zn2+ Ions, ZnO-Bulk and ZnO-NPs treated Allium cepa roots. Scientific Reports, 2017, 7, 40685.	1.6	106
9	Bacterial toxicity of biomimetic green zinc oxide nanoantibiotic: insights into ZnONP uptake and nanocolloid–bacteria interface. Toxicology Research, 2019, 8, 246-261.	0.9	91
10	Destruction of Cell Topography, Morphology, Membrane, Inhibition of Respiration, Biofilm Formation, and Bioactive Molecule Production by Nanoparticles of Ag, ZnO, CuO, TiO ₂ , and Al ₂ O ₃ toward Beneficial Soil Bacteria. ACS Omega, 2020, 5, 7861-7876.	1.6	85
11	Nanoparticles in the soil–plant system: a review. Environmental Chemistry Letters, 2021, 19, 1545-1609.	8.3	68
12	Cadmium, chromium and copper in greengram plants. Agronomy for Sustainable Development, 2007, 27, 145-153.	2.2	60
13	Effective Inhibition of Phytopathogenic Microbes by Eco-Friendly Leaf Extract Mediated Silver Nanoparticles (AgNPs). Indian Journal of Microbiology, 2019, 59, 273-287.	1.5	56
14	Effect of insecticide-tolerant and plant growth-promoting Mesorhizobium on the performance of chickpea grown in insecticide stressed alluvial soils. Journal of Crop Science and Biotechnology, 2009, 12, 217-226.	0.7	54
15	Productivity of greengram in tebuconazole-stressed soil, by using a tolerant and plant growth-promoting Bradyrhizobium sp. MRM6 strain. Acta Physiologiae Plantarum, 2012, 34, 245-254.	1.0	49
16	Differential surface contact killing of pristine and low EPS Pseudomonas aeruginosa with Aloe vera capped hematite (α-Fe2O3) nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 2018, 188, 146-158.	1.7	46
17	Differential responses of maize (Zea mays) at the physiological, biomolecular, and nutrient levels when cultivated in the presence of nano or bulk ZnO or CuO or Zn2+ or Cu2+ ions. Journal of Hazardous Materials, 2021, 419, 126493.	6.5	46
18	Fungicide-Tolerant Plant Growth-Promoting Rhizobacteria Mitigate Physiological Disruption of White Radish Caused by Fungicides Used in the Field Cultivation. International Journal of Environmental Research and Public Health, 2020, 17, 7251.	1.2	44

#	Article	IF	CITATIONS
19	Pseudomonas aeruginosa strain PS1 enhances growth parameters of greengram [Vigna radiata (L.) Wilczek] in insecticide-stressed soils. Journal of Pest Science, 2011, 84, 123-131.	1.9	43
20	In vitro investigation to explore the toxicity of different groups of pesticides for an agronomically important rhizosphere isolate Azotobacter vinelandii. Pesticide Biochemistry and Physiology, 2019, 157, 33-44.	1.6	40
21	Impact of metal-oxide nanoparticles on growth, physiology and yield of tomato (Solanum) Tj ETQq1 1 0.784314 116218.	rgBT /Ov 3.7	erlock 10 Tf 39
22	Assessment of toxic impact of metals on proline, antioxidant enzymes, and biological characteristics of Pseudomonas aeruginosa inoculated Cicer arietinum grown in chromium and nickel-stressed sandy clay loam soils. Environmental Monitoring and Assessment, 2018, 190, 290.	1.3	37
23	Mesorhizobium ciceri as biological tool for improving physiological, biochemical and antioxidant state of Cicer aritienum (L.) under fungicide stress. Scientific Reports, 2021, 11, 9655.	1.6	36
24	Bioprospecting Plant Growth Promoting Rhizobacteria for Enhancing the Biological Properties and Phytochemical Composition of Medicinally Important Crops. Molecules, 2022, 27, 1407.	1.7	29
25	Cellular destruction, phytohormones and growth modulating enzymes production by Bacillus subtilis strain BC8 impacted by fungicides. Pesticide Biochemistry and Physiology, 2018, 149, 8-19.	1.6	28
26	Insecticide-tolerant and plant growth promoting Bradyrhizobium sp. (vigna) improves the growth and yield of greengram [Vigna radiata (L.) Wilczek] in insecticide-stressed soils. Symbiosis, 2011, 54, 17-27.	1.2	27
27	Physiological disruption, structural deformation and low grain yield induced by neonicotinoid insecticides in chickpea: A long term phytotoxicity investigation. Chemosphere, 2021, 262, 128388.	4.2	24
28	Plant-Growth-Promoting Fungicide-Tolerant Rhizobium Improves Growth and Symbiotic Characteristics of Lentil (Lens esculentus) in Fungicide-Applied Soil. Journal of Plant Growth Regulation, 2011, 30, 334-342.	2.8	21
29	Differential bioaccumulations and ecotoxicological impacts of metal-oxide nanoparticles, bulk materials, and metal-ions in cucumbers grown in sandy clay loam soil. Environmental Pollution, 2021, 289, 117854.	3.7	21
30	Psychrophilic Bacterial Phosphate-Biofertilizers: A Novel Extremophile for Sustainable Crop Production under Cold Environment. Microorganisms, 2021, 9, 2451.	1.6	16
31	Biotoxic impact of fungicides on plant growth promoting activities of phosphate-solubilizing Klebsiella sp. isolated from mustard (Brassica campestris) rhizosphere. Journal of Pest Science, 2012, 85, 29-36.	1.9	14
32	Understanding the phytotoxic impact of Al3+, nano-size, and bulk Al2O3 on growth and physiology of maize (Zea mays L.) in aqueous and soil media. Chemosphere, 2022, 300, 134555.	4.2	13
33	Tolerance of pesticides and antibiotics among beneficial soil microbes recovered from contaminated rhizosphere of edible crops. Current Research in Microbial Sciences, 2022, 3, 100091.	1.4	11
34	Pesticide-induced alteration in proteins of characterized soil microbiota revealed by sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE). Journal of Proteins and Proteomics, 2020, 11, 1-9.	1.0	9
35	Influence of composite inoculations of phosphate solubilizing organisms and an arbuscular mycorrhizal fungus on yield, grain protein and phosphorus and nitrogen uptake by greengram. Archives of Agronomy and Soil Science, 2006, 52, 579-590.	1.3	8
36	The Global COVIDâ€19 Observatory and Resource Center for Childhood Cancer: A response for the pediatric oncology community by SIOP and St. Jude Global. Pediatric Blood and Cancer, 2021, 68, e28962.	0.8	8

#	Article	lF	CITATIONS
37	Pediatric oncology infrastructure and workforce training needs: A report from the Pediatric Oncology East and Mediterranean (POEM) Group. Pediatric Blood and Cancer, 2021, 68, e29190.	0.8	6
38	Sorghum-Phosphate Solubilizers Interactions: Crop Nutrition, Biotic Stress Alleviation, and Yield Optimization. Frontiers in Plant Science, 2021, 12, 746780.	1.7	6
39	Global Neuroblastoma Network: An international multidisciplinary neuroblastoma tumor board for resourceâ€limited countries. Pediatric Blood and Cancer, 2022, 69, e29568.	0.8	6
40	An Insight into Efflux-Mediated Arsenic Resistance and Biotransformation Potential of Enterobacter Cloacae RSC3 from Arsenic Polluted Area. Indian Journal of Microbiology, 2022, 62, 456-467.	1.5	5
41	Mapping Pediatric Oncology Clinical Trial Collaborative Groups on the Global Stage. JCO Global Oncology, 2022, 8, e2100266.	0.8	2
42	SIOP Strategy 2021–2025: Cure for more, care for all. Pediatric Blood and Cancer, 2022, 69, e29577.	0.8	2
43	Defining Essential Childhood Cancer Medicines to Inform Prioritization and Access: Results From an International, Cross-Sectional Survey. JCO Global Oncology, 2022, , .	0.8	2
44	Pediatric oncology infrastructure and workforce training needs: a report from the Pediatric Oncology East and Mediterranean (POEM) Group. Pediatric Blood and Cancer, 0, , .	0.8	1
45	Late Morbidity Among Survivors of Childhood Cancers; Experience at Tertiary Care Cancer Hospital. Journal of Cancer & Allied Specialties, 2020, 6, .	0.1	0
46	Outcome of first relapse of Hodgkin lymphoma: Single Institution experience. JPMA the Journal of the Pakistan Medical Association, 2021, 71, 1-15.	0.1	0