
Stanley Perlman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9198510/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 2020, 5, 536-544.	13.3	5,799
2	Coronaviruses: An Overview of Their Replication and Pathogenesis. Methods in Molecular Biology, 2015, 1282, 1-23.	0.9	2,664
3	Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Seminars in Immunopathology, 2017, 39, 529-539.	6.1	2,041
4	Coronaviruses post-SARS: update on replication and pathogenesis. Nature Reviews Microbiology, 2009, 7, 439-450.	28.6	1,371
5	Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host and Microbe, 2016, 19, 181-193.	11.0	1,284
6	Severe Acute Respiratory Syndrome Coronavirus Infection Causes Neuronal Death in the Absence of Encephalitis in Mice Transgenic for Human ACE2. Journal of Virology, 2008, 82, 7264-7275.	3.4	1,101
7	Middle East respiratory syndrome. Lancet, The, 2015, 386, 995-1007.	13.7	1,033
8	Commentary: Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group. Journal of Virology, 2013, 87, 7790-7792.	3.4	1,012
9	Lethal Infection of K18- hACE2 Mice Infected with Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 2007, 81, 813-821.	3.4	904
10	ACE2 Receptor Expression and Severe Acute Respiratory Syndrome Coronavirus Infection Depend on Differentiation of Human Airway Epithelia. Journal of Virology, 2005, 79, 14614-14621.	3.4	782
11	Anti–spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight, 2019, 4, .	5.0	742
12	Another Decade, Another Coronavirus. New England Journal of Medicine, 2020, 382, 760-762.	27.0	734
13	Sex-Based Differences in Susceptibility to Severe Acute Respiratory Syndrome Coronavirus Infection. Journal of Immunology, 2017, 198, 4046-4053.	0.8	718
14	Animal models for COVID-19. Nature, 2020, 586, 509-515.	27.8	705
15	A Transmembrane Serine Protease Is Linked to the Severe Acute Respiratory Syndrome Coronavirus Receptor and Activates Virus Entry. Journal of Virology, 2011, 85, 873-882.	3.4	611
16	Kinetics of viral load and antibody response in relation to COVID-19 severity. Journal of Clinical Investigation, 2020, 130, 5235-5244.	8.2	501
17	A SARS-CoV-2 Infection Model in Mice Demonstrates Protection by Neutralizing Antibodies. Cell, 2020, 182, 744-753.e4.	28.9	486
18	SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature, 2022, 603, 687-692.	27.8	475

#	Article	IF	CITATIONS
19	Airway Memory CD4 + T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses. Immunity, 2016, 44, 1379-1391.	14.3	468
20	IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. Journal of Clinical Investigation, 2019, 129, 3625-3639.	8.2	460
21	Immunopathogenesis of coronavirus infections: implications for SARS. Nature Reviews Immunology, 2005, 5, 917-927.	22.7	452
22	T cell-mediated immune response to respiratory coronaviruses. Immunologic Research, 2014, 59, 118-128.	2.9	448
23	β-Coronaviruses Use Lysosomes for Egress Instead of the Biosynthetic Secretory Pathway. Cell, 2020, 183, 1520-1535.e14.	28.9	441
24	Virus-Specific Memory CD8 T Cells Provide Substantial Protection from Lethal Severe Acute Respiratory Syndrome Coronavirus Infection. Journal of Virology, 2014, 88, 11034-11044.	3.4	407
25	Rapid generation of a mouse model for Middle East respiratory syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4970-4975.	7.1	399
26	Generation of a Broadly Useful Model for COVID-19 Pathogenesis, Vaccination, and Treatment. Cell, 2020, 182, 734-743.e5.	28.9	398
27	COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice. Nature, 2021, 589, 603-607.	27.8	394
28	Middle East Respiratory Syndrome Coronavirus Causes Multiple Organ Damage and Lethal Disease in Mice Transgenic for Human Dipeptidyl Peptidase 4. Journal of Infectious Diseases, 2016, 213, 712-722.	4.0	375
29	Middle East respiratory syndrome. Lancet, The, 2020, 395, 1063-1077.	13.7	358
30	T Cell Responses Are Required for Protection from Clinical Disease and for Virus Clearance in Severe Acute Respiratory Syndrome Coronavirus-Infected Mice. Journal of Virology, 2010, 84, 9318-9325.	3.4	344
31	Inhibition of NF-κB-Mediated Inflammation in Severe Acute Respiratory Syndrome Coronavirus-Infected Mice Increases Survival. Journal of Virology, 2014, 88, 913-924.	3.4	344
32	Lessons for COVID-19 Immunity from Other Coronavirus Infections. Immunity, 2020, 53, 248-263.	14.3	281
33	Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12262-12267.	7.1	272
34	Recovery from the Middle East respiratory syndrome is associated with antibody and T cell responses. Science Immunology, 2017, 2, .	11.9	252
35	Role of Severe Acute Respiratory Syndrome Coronavirus Viroporins E, 3a, and 8a in Replication and Pathogenesis. MBio, 2018, 9, .	4.1	248
36	Age-related increases in PGD2 expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice. Journal of Clinical Investigation, 2011, 121, 4921-4930.	8.2	228

#	Article	IF	CITATIONS
37	Middle East Respiratory Syndrome: Emergence of a Pathogenic Human Coronavirus. Annual Review of Medicine, 2017, 68, 387-399.	12.2	219
38	Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10473-10478.	7.1	198
39	The Conserved Coronavirus Macrodomain Promotes Virulence and Suppresses the Innate Immune Response during Severe Acute Respiratory Syndrome Coronavirus Infection. MBio, 2016, 7, .	4.1	198
40	SREBP-dependent lipidomic reprogramming as a broad-spectrum antiviral target. Nature Communications, 2019, 10, 120.	12.8	192
41	CD4 and CD8 T Cells Have Redundant But Not Identical Roles in Virus-Induced Demyelination. Journal of Immunology, 2000, 165, 2278-2286.	0.8	187
42	3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV–infected mice. Science Translational Medicine, 2020, 12, .	12.4	187
43	Innate immune and inflammatory responses to SARS-CoV-2: Implications for COVID-19. Cell Host and Microbe, 2021, 29, 1052-1062.	11.0	185
44	Statement in support of the scientists, public health professionals, and medical professionals of China combatting COVID-19. Lancet, The, 2020, 395, e42-e43.	13.7	182
45	Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Regulates Cell Stress Response and Apoptosis. PLoS Pathogens, 2011, 7, e1002315.	4.7	173
46	The coronavirus macrodomain is required to prevent PARP-mediated inhibition of virus replication and enhancement of IFN expression. PLoS Pathogens, 2019, 15, e1007756.	4.7	155
47	Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice. Proceedings of the United States of America, 2017, 114, E3119-E3128.	7.1	147
48	Pathogenicity of severe acute respiratory coronavirus deletion mutants in hACE-2 transgenic mice. Virology, 2008, 376, 379-389.	2.4	146
49	MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity. Proceedings of the United States of America, 2018, 115, 3144-3149.	7.1	142
50	Highly Activated Cytotoxic CD8 T Cells Express Protective IL-10 at the Peak of Coronavirus-Induced Encephalitis. Journal of Immunology, 2011, 186, 3642-3652.	0.8	141
51	Evasion by Stealth: Inefficient Immune Activation Underlies Poor T Cell Response and Severe Disease in SARS-CoV-Infected Mice. PLoS Pathogens, 2009, 5, e1000636.	4.7	140
52	The nsp3 Macrodomain Promotes Virulence in Mice with Coronavirus-Induced Encephalitis. Journal of Virology, 2015, 89, 1523-1536.	3.4	140
53	A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein. Cell Research, 2015, 25, 1237-1249.	12.0	137
54	Microglia are required for protection against lethal coronavirus encephalitis in mice. Journal of Clinical Investigation, 2018, 128, 931-943.	8.2	137

#	Article	IF	CITATIONS
55	Identification of the Mechanisms Causing Reversion to Virulence in an Attenuated SARS-CoV for the Design of a Genetically Stable Vaccine. PLoS Pathogens, 2015, 11, e1005215.	4.7	137
56	Macrophage Infiltration, but Not Apoptosis, Is Correlated with Immune-Mediated Demyelination following Murine Infection with a Neurotropic Coronavirus. Journal of Virology, 1999, 73, 8771-8780.	3.4	132
57	Coronavirus infection and PARP expression dysregulate the NAD metabolome: An actionable component of innate immunity. Journal of Biological Chemistry, 2020, 295, 17986-17996.	3.4	132
58	Coronaviruses: An Updated Overview of Their Replication and Pathogenesis. Methods in Molecular Biology, 2020, 2203, 1-29.	0.9	132
59	Antibody Response and Disease Severity in Healthcare Worker MERS Survivors. Emerging Infectious Diseases, 2016, 22, .	4.3	131
60	Two neurotropic viruses, herpes simplex virus type 1 and mouse hepatitis virus, spread along different neural pathways from the main olfactory bulb. Neuroscience, 1993, 57, 1007-1025.	2.3	128
61	Activation of Astrocytes in the Spinal Cord of Mice Chronically Infected with a Neurotropic Coronavirus. Virology, 1995, 213, 482-493.	2.4	127
62	lmmunization with an attenuated severe acute respiratory syndrome coronavirus deleted in E protein protects against lethal respiratory disease. Virology, 2010, 399, 120-128.	2.4	127
63	Severe Acute Respiratory Syndrome Coronavirus 2–Induced Immune Activation and Death of Monocyte-Derived Human Macrophages and Dendritic Cells. Journal of Infectious Diseases, 2021, 223, 785-795.	4.0	127
64	Critical role of phospholipase A2 group IID in age-related susceptibility to severe acute respiratory syndrome–CoV infection. Journal of Experimental Medicine, 2015, 212, 1851-1868.	8.5	123
65	The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases. PLoS Pathogens, 2017, 13, e1006546.	4.7	121
66	Post-viral effects of COVID-19 in the olfactory system and their implications. Lancet Neurology, The, 2021, 20, 753-761.	10.2	119
67	Severe Acute Respiratory Syndrome Coronaviruses with Mutations in the E Protein Are Attenuated and Promising Vaccine Candidates. Journal of Virology, 2015, 89, 3870-3887.	3.4	118
68	Immune dysregulation and immunopathology induced by SARS-CoV-2 and related coronaviruses — are we our own worst enemy?. Nature Reviews Immunology, 2022, 22, 47-56.	22.7	118
69	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	27.8	117
70	Effect of olfactory bulb ablation on spread of a neurotropic coronavirus into the mouse brain Journal of Experimental Medicine, 1990, 172, 1127-1132.	8.5	116
71	Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus. Cellular and Molecular Immunology, 2016, 13, 180-190.	10.5	114
72	Intranasal Treatment with Poly(l·C) Protects Aged Mice from Lethal Respiratory Virus Infections. Journal of Virology, 2012, 86, 11416-11424.	3.4	113

#	Article	IF	CITATIONS
73	Structural Basis for the Identification of the N-Terminal Domain of Coronavirus Nucleocapsid Protein as an Antiviral Target. Journal of Medicinal Chemistry, 2014, 57, 2247-2257.	6.4	113
74	Efficacy of an Automated Multiple Emitter Whole-Room Ultraviolet-C Disinfection System Against Coronaviruses MHV and MERS-CoV. Infection Control and Hospital Epidemiology, 2016, 37, 598-599.	1.8	111
75	Complete Protection against Severe Acute Respiratory Syndrome Coronavirus-Mediated Lethal Respiratory Disease in Aged Mice by Immunization with a Mouse-Adapted Virus Lacking E Protein. Journal of Virology, 2013, 87, 6551-6559.	3.4	108
76	Late onset, symptomatic, demyelinating encephalomyelitis in mice infected with MHV-JHM in the presence of maternal antibody. Microbial Pathogenesis, 1987, 2, 185-194.	2.9	107
77	Rhesus Theta-Defensin Prevents Death in a Mouse Model of Severe Acute Respiratory Syndrome Coronavirus Pulmonary Disease. Journal of Virology, 2009, 83, 11385-11390.	3.4	107
78	Intracellular processing of the N-terminal ORF 1a proteins of the coronavirus MHV-A59 requires multiple proteolytic events. Virology, 1992, 189, 274-284.	2.4	106
79	Mouse Hepatitis Virus Does Not Induce Beta Interferon Synthesis and Does Not Inhibit Its Induction by Double-Stranded RNA. Journal of Virology, 2007, 81, 568-574.	3.4	106
80	Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines. Nature Communications, 2016, 7, 13473.	12.8	106
81	Mitochondrial protein synthesis: Resistance to emetine and response to RNA synthesis inhibitors. Biochemical and Biophysical Research Communications, 1970, 40, 941-948.	2.1	104
82	MERS-CoV 4b protein interferes with the NF-κB-dependent innate immune response during infection. PLoS Pathogens, 2018, 14, e1006838.	4.7	104
83	Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo. Science Translational Medicine, 2016, 8, 326ra21.	12.4	102
84	Consensus summary report for CEPI/BC March 12–13, 2020 meeting: Assessment of risk of disease enhancement with COVID-19 vaccines. Vaccine, 2020, 38, 4783-4791.	3.8	102
85	Receptor Variation and Susceptibility to Middle East Respiratory Syndrome Coronavirus Infection. Journal of Virology, 2014, 88, 4953-4961.	3.4	101
86	The Olfactory Nerve and Not the Trigeminal Nerve Is the Major Site of CNS Entry for Mouse Hepatitis Virus, Strain JHM. Virology, 1993, 194, 185-191.	2.4	98
87	Cell receptor-independent infection by a neurotropic murine coronavirus. Virology, 1992, 191, 517-522.	2.4	97
88	High Prevalence of MERS-CoV Infection in Camel Workers in Saudi Arabia. MBio, 2018, 9, .	4.1	97
89	Structure-guided design of potent and permeable inhibitors of MERS coronavirus 3CL protease that utilize a piperidine moiety as a novel design element. European Journal of Medicinal Chemistry, 2018, 150, 334-346.	5.5	96
90	Cytotoxic T Cell–Resistant Variants Are Selected in a Virus-Induced Demyelinating Disease. Immunity, 1996, 5, 253-262.	14.3	95

#	Article	IF	CITATIONS
91	Viral Macrodomains: Unique Mediators of Viral Replication and Pathogenesis. Trends in Microbiology, 2018, 26, 598-610.	7.7	93
92	A Severe Acute Respiratory Syndrome-Associated Coronavirus-Specific Protein Enhances Virulence of an Attenuated Murine Coronavirus. Journal of Virology, 2005, 79, 11335-11342.	3.4	92
93	Mitochondrial Protein Synthesis: RNA with the Properties of Eukaryotic Messenger RNA. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70, 350-353.	7.1	89
94	IFN-γ– and IL-10–expressing virus epitope-specific Foxp3+ T reg cells in the central nervous system during encephalomyelitis. Journal of Experimental Medicine, 2011, 208, 1571-1577.	8.5	88
95	Spread of a neurotropic murine coronavirus into the CNS via the trigeminal and olfactory nerves. Virology, 1989, 170, 556-560.	2.4	87
96	Protective Effect of Intranasal Regimens Containing Peptidic Middle East Respiratory Syndrome Coronavirus Fusion Inhibitor Against MERS-CoV Infection. Journal of Infectious Diseases, 2015, 212, 1894-1903.	4.0	87
97	Distinct Roles for Sialoside and Protein Receptors in Coronavirus Infection. MBio, 2020, 11, .	4.1	86
98	Differential Effects of IL-12 on Tregs and Non-Treg T Cells: Roles of IFN-γ, IL-2 and IL-2R. PLoS ONE, 2012, 7, e46241.	2.5	82
99	Eicosanoid signalling blockade protects middle-aged mice from severe COVID-19. Nature, 2022, 605, 146-151.	27.8	82
100	Inactivation of Expression of Gene 4 of Mouse Hepatitis Virus Strain JHM Does Not Affect Virulence in the Murine CNS. Virology, 2001, 289, 230-238.	2.4	80
101	Mouse hepatitis virus. Current Opinion in Microbiology, 2001, 4, 462-466.	5.1	78
102	Spread of MERS to South Korea and China. Lancet Respiratory Medicine,the, 2015, 3, 509-510.	10.7	77
103	Axonal Damage Is T Cell Mediated and Occurs Concomitantly with Demyelination in Mice Infected with a Neurotropic Coronavirus. Journal of Virology, 2001, 75, 6115-6120.	3.4	76
104	Cutting Edge: CD8 T Cell-Mediated Demyelination Is IFN-Î ³ Dependent in Mice Infected with a Neurotropic Coronavirus. Journal of Immunology, 2002, 168, 1547-1551.	0.8	76
105	Enhanced Virulence Mediated by the Murine Coronavirus, Mouse Hepatitis Virus Strain JHM, Is Associated with a Glycine at Residue 310 of the Spike Glycoprotein. Journal of Virology, 2003, 77, 10260-10269.	3.4	74
106	Protein-synthesizing Structures associated with Mitochondria. Nature, 1970, 227, 133-137.	27.8	72
107	Quantification of Repertoire Diversity of Influenza-Specific Epitopes with Predominant Public or Private TCR Usage. Journal of Immunology, 2006, 177, 6705-6712.	0.8	70
108	Herpes Simplex Encephalitis in the Temporal Cortex and Limbic System after Trigeminal Nerve Inoculation. Journal of Infectious Diseases, 1994, 169, 782-786.	4.0	69

#	Article	IF	CITATIONS
109	Bystander CD8 T Cell-Mediated Demyelination After Viral Infection of the Central Nervous System. Journal of Immunology, 2002, 169, 1550-1555.	0.8	69
110	Recombinant Receptor-Binding Domains of Multiple Middle East Respiratory Syndrome Coronaviruses (MERS-CoVs) Induce Cross-Neutralizing Antibodies against Divergent Human and Camel MERS-CoVs and Antibody Escape Mutants. Journal of Virology, 2017, 91, .	3.4	69
111	Role of regulatory T cells in coronavirus-induced acute encephalitis. Virology, 2009, 385, 358-367.	2.4	68
112	Alisporivir inhibits MERS- and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model. Virus Research, 2017, 228, 7-13.	2.2	68
113	Human Coronavirus 229E Infects Polarized Airway Epithelia from the Apical Surface. Journal of Virology, 2000, 74, 9234-9239.	3.4	67
114	Vaccine-associated enhanced disease: Case definition and guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine, 2021, 39, 3053-3066.	3.8	66
115	Identification of the spinal cord as a major site of persistence during during chronic infection with a murine coronavirus. Virology, 1990, 175, 418-426.	2.4	64
116	Passive Immunotherapy with Dromedary Immune Serum in an Experimental Animal Model for Middle East Respiratory Syndrome Coronavirus Infection. Journal of Virology, 2015, 89, 6117-6120.	3.4	64
117	Analysis of Xenopus laevis ovary and somatic cell polyadenylated RNA by molecular hybridization. Developmental Biology, 1978, 63, 197-212.	2.0	63
118	Regulatory T Cells Inhibit T Cell Proliferation and Decrease Demyelination in Mice Chronically Infected with a Coronavirus. Journal of Immunology, 2010, 184, 4391-4400.	0.8	63
119	Murine encephalitis caused by HCoV-OC43, a human coronavirus with broad species specificity, is partly immune-mediated. Virology, 2006, 347, 410-421.	2.4	62
120	A study of foldback DNA. Cell, 1976, 8, 33-42.	28.9	61
121	The coronavirus nucleocapsid protein is ADP-ribosylated. Virology, 2018, 517, 62-68.	2.4	61
122	Postinfection treatment with a protease inhibitor increases survival of mice with a fatal SARS-CoV-2 infection. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	61
123	Advances and gaps in SARS-CoV-2 infection models. PLoS Pathogens, 2022, 18, e1010161.	4.7	61
124	Murine Coronavirus Infection Activates the Aryl Hydrocarbon Receptor in an Indoleamine 2,3-Dioxygenase-Independent Manner, Contributing to Cytokine Modulation and Proviral TCDD-Inducible-PARP Expression. Journal of Virology, 2020, 94, .	3.4	60
125	Congenital Viral Infections of the Brain: Lessons Learned from Lymphocytic Choriomeningitis Virus in the Neonatal Rat. PLoS Pathogens, 2007, 3, e149.	4.7	59
126	Age-related susceptibility to coronavirus infections: role of impaired and dysregulated host immunity. Journal of Clinical Investigation, 2020, 130, 6204-6213.	8.2	59

#	Article	IF	CITATIONS
127	Detection of a murine coronavirus nonstructural protein encoded in a downstream open reading frame. Virology, 1988, 164, 156-164.	2.4	57
128	Very Diverse CD8 T Cell Clonotypic Responses after Virus Infections. Journal of Immunology, 2004, 172, 3151-3156.	0.8	56
129	Immune responses in influenza A virus and human coronavirus infections: an ongoing battle between the virus and host. Current Opinion in Virology, 2018, 28, 43-52.	5.4	56
130	Cytomegalovirus transmission in a Midwest day care center: Possible relationship to child care practices. Journal of Pediatrics, 1986, 109, 35-39.	1.8	55
131	Maturation and Localization of Macrophages and Microglia During Infection with a Neurotropic Murine Coronavirus. Brain Pathology, 2008, 18, 40-51.	4.1	55
132	Middle East respiratory syndrome and severe acute respiratory syndrome. Current Opinion in Virology, 2016, 16, 70-76.	5.4	55
133	CD4 T-Cell-Mediated Demyelination Is Increased in the Absence of Gamma Interferon in Mice Infected with Mouse Hepatitis Virus. Journal of Virology, 2002, 76, 7329-7333.	3.4	54
134	Microglia depletion exacerbates demyelination and impairs remyelination in a neurotropic coronavirus infection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24464-24474.	7.1	54
135	Depletion of Blood-Borne Macrophages Does Not Reduce Demyelination in Mice Infected with a Neurotropic Coronavirus. Journal of Virology, 1999, 73, 6327-6334.	3.4	54
136	DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice. Vaccine, 2017, 35, 2069-2075.	3.8	53
137	The Cellular Redox Environment Alters Antigen Presentation. Journal of Biological Chemistry, 2014, 289, 27979-27991.	3.4	52
138	Virus-Induced Demyelination in Nude Mice Is Mediated by γδT Cells. American Journal of Pathology, 2002, 161, 1255-1263.	3.8	51
139	Middle East Respiratory Syndrome– advancing the public health and research agenda on MERS- lessons from the South Korea outbreak. International Journal of Infectious Diseases, 2015, 36, 54-55.	3.3	50
140	Murine Coronavirus Ubiquitin-Like Domain Is Important for Papain-Like Protease Stability and Viral Pathogenesis. Journal of Virology, 2015, 89, 4907-4917.	3.4	50
141	Severe Acute Respiratory Syndrome Coronavirus Protein 6 Is Required for Optimal Replication. Journal of Virology, 2009, 83, 2368-2373.	3.4	49
142	Dynamics of SARS-CoV-2 Spike Proteins in Cell Entry: Control Elements in the Amino-Terminal Domains. MBio, 2021, 12, e0159021.	4.1	49
143	Coronavirus-Induced Demyelination Occurs in the Presence of Virus-Specific Cytotoxic T Cells. Virology, 1994, 200, 733-743.	2.4	48
144	Virus-induced inflammasome activation is suppressed by prostaglandin D ₂ /DP1 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5444-E5453.	7.1	48

#	Article	IF	CITATIONS
145	Targeting highly pathogenic coronavirus-induced apoptosis reduces viral pathogenesis and disease severity. Science Advances, 2021, 7, .	10.3	48
146	SARS-CoV-2 takes its Toll. Nature Immunology, 2021, 22, 801-802.	14.5	47
147	<i>In Situ</i> Tagged nsp15 Reveals Interactions with Coronavirus Replication/Transcription Complex-Associated Proteins. MBio, 2017, 8, .	4.1	46
148	High-Magnitude, Virus-Specific CD4 T-Cell Response in the Central Nervous System of Coronavirus-Infected Mice. Journal of Virology, 2001, 75, 3043-3047.	3.4	44
149	Severe Acute Respiratory Syndrome Coronavirus Protein 6 Accelerates Murine Coronavirus Infections. Journal of Virology, 2007, 81, 1220-1229.	3.4	44
150	Crystal structure-based exploration of the important role of Arg106 in the RNA-binding domain of human coronavirus OC43 nucleocapsid protein. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1054-1062.	2.3	43
151	Single-Dose, Intranasal Immunization with Recombinant Parainfluenza Virus 5 Expressing Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Spike Protein Protects Mice from Fatal MERS-CoV Infection. MBio, 2020, 11, .	4.1	43
152	COVID-19: Inflammatory Profile. Annual Review of Medicine, 2022, 73, 65-80.	12.2	43
153	Viral Expression of CCL2 Is Sufficient To Induce Demyelination in RAG1 â^'/â^' Mice Infected with a Neurotropic Coronavirus. Journal of Virology, 2005, 79, 7113-7120.	3.4	42
154	The development of Nanosota-1 as anti-SARS-CoV-2 nanobody drug candidates. ELife, 2021, 10, .	6.0	42
155	Ribonucleic acid synthesis of vesicular stomatitis virus. Journal of Molecular Biology, 1974, 85, 127-136.	4.2	40
156	Identification of a CD4+ T Cell Epitope within the M Protein of a Neurotropic Coronavirus. Virology, 1995, 208, 173-179.	2.4	40
157	Coronavirus Structural Proteins and Virus Assembly. , 0, , 179-200.		40
158	Nitric oxide synthase Type II expression by different cell types in MHV-JHM encephalitis suggests distinct roles for nitric oxide in acute versus persistent virus infection. Journal of Neuroimmunology, 1997, 73, 15-27.	2.3	38
159	Structure-Guided Design of Conformationally Constrained Cyclohexane Inhibitors of Severe Acute Respiratory Syndrome Coronavirus-2 3CL Protease. Journal of Medicinal Chemistry, 2021, 64, 10047-10058.	6.4	38
160	Inter-domain communication in SARS-CoV-2 spike proteins controls protease-triggered cell entry. Cell Reports, 2022, 39, 110786.	6.4	37
161	Pathogenic Role for Virus-Specific CD4 T Cells in Mice with Coronavirus-Induced Acute Encephalitis. American Journal of Pathology, 2006, 169, 209-222.	3.8	36
162	The N-Terminal Region of Severe Acute Respiratory Syndrome Coronavirus Protein 6 Induces Membrane Rearrangement and Enhances Virus Replication. Journal of Virology, 2010, 84, 3542-3551.	3.4	36

#	Article	IF	CITATIONS
163	Single intranasal immunization with chimpanzee adenovirus-based vaccine induces sustained and protective immunity against MERS-CoV infection. Emerging Microbes and Infections, 2019, 8, 760-772.	6.5	36
164	Presence of tadpole and adult globin RNA sequences in oocytes of Xenopus laevis. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74, 3835-3839.	7.1	35
165	Infection with Cytotoxic T-Lymphocyte Escape Mutants Results in Increased Mortality and Growth Retardation in Mice Infected with a Neurotropic Coronavirus. Journal of Virology, 1998, 72, 5912-5918.	3.4	35
166	A natural product compound inhibits coronaviral replication inÂvitro by binding to the conserved Nsp9 SARS-CoV-2 protein. Journal of Biological Chemistry, 2021, 297, 101362.	3.4	35
167	Immune response to a murine coronavirus: Identification of a homing receptor-negative CD4+ T cell subset that responds to viral glycoproteins. Virology, 1992, 187, 443-452.	2.4	34
168	Coronavirus-Induced Demyelination Occurs in the Absence of Inducible Nitric Oxide Synthase. Journal of Virology, 2000, 74, 7683-7686.	3.4	34
169	Virus-Neutralizing Monoclonal Antibody Expressed in Milk of Transgenic Mice Provides Full Protection against Virus-Induced Encephalitis. Journal of Virology, 2001, 75, 2803-2809.	3.4	34
170	Bystander CD8 T-Cell-Mediated Demyelination is Interferon-Î ³ -Dependent in a Coronavirus Model of Multiple Sclerosis. American Journal of Pathology, 2004, 164, 363-369.	3.8	34
171	Important Roles for Gamma Interferon and NKG2D in γδT-Cell-Induced Demyelination in T-Cell Receptor β-Deficient Mice Infected with a Coronavirus. Journal of Virology, 2005, 79, 9388-9396.	3.4	34
172	Autocrine Interferon Priming in Macrophages but Not Dendritic Cells Results in Enhanced Cytokine and Chemokine Production after Coronavirus Infection. MBio, 2010, 1, .	4.1	34
173	Transgenic CCL2 Expression in the Central Nervous System Results in a Dysregulated Immune Response and Enhanced Lethality after Coronavirus Infection. Journal of Virology, 2013, 87, 2376-2389.	3.4	34
174	MHV nucleocapsid synthesis in the presence of cycloheximide and accumulation of negative strand MHV RNA. Virus Research, 1986, 6, 261-272.	2.2	33
175	Developmental Regulation of Angiotensinogen Gene Expression in Sheep. Pediatric Research, 1990, 28, 183-185.	2.3	33
176	Enhancement of Murine Coronavirus Replication by Severe Acute Respiratory Syndrome Coronavirus Protein 6 Requires the N-Terminal Hydrophobic Region but Not C-Terminal Sorting Motifs. Journal of Virology, 2007, 81, 11520-11525.	3.4	33
177	Virus-Specific Regulatory T Cells Ameliorate Encephalitis by Repressing Effector T Cell Functions from Priming to Effector Stages. PLoS Pathogens, 2014, 10, e1004279.	4.7	33
178	Coronaviruses, Including Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). , 2015, , 1928-1936.e2.		33
179	Antigen Specificity of CD4 T Cell Response in the Central Nervous System of Mice Infected with Mouse Hepatitis Virus. Virology, 1997, 238, 68-78.	2.4	32
180	Pathogenesis of acute and chronic central nervous system infection with variants of mouse hepatitis virus, strain JHM. Immunologic Research, 2007, 39, 160-172.	2.9	32

#	Article	lF	CITATIONS
181	Oligodendrocytes that survive acute coronavirus infection induce prolonged inflammatory responses in the CNS. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15902-15910.	7.1	32
182	Preferential Infection of Mature Dendritic Cells by Mouse Hepatitis Virus Strain JHM. Journal of Virology, 2006, 80, 2506-2514.	3.4	31
183	Virally Expressed Interleukin-10 Ameliorates Acute Encephalomyelitis and Chronic Demyelination in Coronavirus-Infected Mice. Journal of Virology, 2011, 85, 6822-6831.	3.4	31
184	Regional localization of virus in the central nervous system of mice persistently infected with murine coronavirus JHM. Virology, 1988, 166, 328-338.	2.4	30
185	Severe Acute Respiratory Syndrome Coronavirus Protein 6 Accelerates Murine Hepatitis Virus Infections by More than One Mechanism. Journal of Virology, 2008, 82, 7212-7222.	3.4	30
186	Evaluation of Activation and Inflammatory Activity of Myeloid Cells During Pathogenic Human Coronavirus Infection. Methods in Molecular Biology, 2020, 2099, 195-204.	0.9	29
187	COVID-19 poses a riddle for the immune system. Nature, 2020, 584, 345-346.	27.8	29
188	Utilization of Messenger in Adenovirus-2-infected Cells at Normal and Elevated Temperatures. Nature: New Biology, 1972, 238, 143-144.	4.5	28
189	Passive immunotherapy for Middle East Respiratory Syndrome coronavirus infection with equine immunoglobulin or immunoglobulin fragments in a mouse model. Antiviral Research, 2017, 137, 125-130.	4.1	28
190	MHV S peplomer protein expressed by a recombinant vaccinia virus vector exhibits IgG Fc-receptor activity. Virology, 1992, 186, 122-132.	2.4	27
191	Broad reception for coronavirus. Nature, 2013, 495, 176-177.	27.8	27
192	Murine Olfactory Bulb Interneurons Survive Infection with a Neurotropic Coronavirus. Journal of Virology, 2017, 91, .	3.4	27
193	Nasal priming by a murine coronavirus provides protective immunity against lethal heterologous virus pneumonia. JCI Insight, 2018, 3, .	5.0	27
194	Exponential increase in neutralizing and spike specific antibodies following vaccination of <scp>COVID</scp> â€19 convalescent plasma donors. Transfusion, 2021, 61, 2099-2106.	1.6	27
195	Infection of Human Airway Epithelia by Sars Coronavirus is Associated with ACE2 Expression and Localization. Advances in Experimental Medicine and Biology, 2006, 581, 479-484.	1.6	27
196	N7-Methylation of the Coronavirus RNA Cap Is Required for Maximal Virulence by Preventing Innate Immune Recognition. MBio, 2022, 13, e0366221.	4.1	27
197	Middle East respiratory syndrome vaccines. International Journal of Infectious Diseases, 2016, 47, 23-28.	3.3	26
198	Immune Response to the Immunodominant Epitope of Mouse Hepatitis Virus Is Polyclonal, but Functionally Monospecific in C57Bl/6 Mice. Virology, 1999, 255, 106-116.	2.4	25

#	Article	IF	CITATIONS
199	Person-to-Person Spread of the MERS Coronavirus — An Evolving Picture. New England Journal of Medicine, 2013, 369, 466-467.	27.0	25
200	Does common cold coronavirus infection protect against severe SARS-CoV-2 disease?. Journal of Clinical Investigation, 2021, 131, .	8.2	25
201	Virus-Specific Antibody, in the Absence of T Cells, Mediates Demyelination in Mice Infected with a Neurotropic Coronavirus. American Journal of Pathology, 2005, 166, 801-809.	3.8	24
202	Structural and Biological Basis of CTL Escape in Coronavirus-Infected Mice. Journal of Immunology, 2008, 180, 3926-3937.	0.8	23
203	De Novo Recruitment of Antigen-Experienced and Naive T Cells Contributes to the Long-Term Maintenance of Antiviral T Cell Populations in the Persistently Infected Central Nervous System. Journal of Immunology, 2009, 183, 5163-5170.	0.8	23
204	MAVS Expressed by Hematopoietic Cells Is Critical for Control of West Nile Virus Infection and Pathogenesis. Journal of Virology, 2016, 90, 7098-7108.	3.4	23
205	Inactivation of Severe Acute Respiratory Coronavirus Virus 2 (SARS-CoV-2) and Diverse RNA and DNA Viruses on Three-Dimensionally Printed Surgical Mask Materials. Infection Control and Hospital Epidemiology, 2021, 42, 253-260.	1.8	23
206	Protection Against CTL Escape and Clinical Disease in a Murine Model of Virus Persistence. Journal of Immunology, 2003, 171, 2006-2013.	0.8	22
207	Structure-Guided Design of Potent Inhibitors of SARS-CoV-2 3CL Protease: Structural, Biochemical, and Cell-Based Studies. Journal of Medicinal Chemistry, 2021, 64, 17846-17865.	6.4	22
208	Development of a Single-Cycle Infectious SARS-CoV-2 Virus Replicon Particle System for Use in Biosafety Level 2 Laboratories. Journal of Virology, 2022, 96, JVI0183721.	3.4	21
209	Murine Cytomegalovirus Genomic Material in Marrow Cells: Relation to Altered Leukocyte Counts During Sublethal Infection of Mice. Journal of Infectious Diseases, 1987, 155, 207-212.	4.0	20
210	γδT cell response induced by vaginal Herpes simplex 2 infection. Immunology Letters, 1999, 70, 89-93.	2.5	20
211	Bystander CD4 T cells do not mediate demyelination in mice infected with a neurotropic coronavirus. Journal of Neuroimmunology, 2003, 137, 42-50.	2.3	20
212	Human Coronavirus EMC Is Not the Same as Severe Acute Respiratory Syndrome Coronavirus. MBio, 2013, 4, .	4.1	20
213	Selective Packaging in Murine Coronavirus Promotes Virulence by Limiting Type I Interferon Responses. MBio, 2018, 9, .	4.1	20
214	Sensitization of Non-permissive Laboratory Mice to SARS-CoV-2 with a Replication-Deficient Adenovirus Expressing Human ACE2. STAR Protocols, 2020, 1, 100169.	1.2	20
215	MERS-CoV endoribonuclease and accessory proteins jointly evade host innate immunity during infection of lung and nasal epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	20
216	Differential Antigen Recognition by T Cells from the Spleen and Central Nervous System of Coronavirus-Infected Mice. Virology, 1996, 222, 247-251.	2.4	18

#	Article	IF	CITATIONS
217	IFN-Î ³ -mediated suppression of coronavirus replication in glial-committed progenitor cells. Virology, 2009, 384, 209-215.	2.4	18
218	Antibody-Mediated Protection against Cytotoxic T-Cell Escape in Coronavirus-Induced Demyelination. Journal of Virology, 2003, 77, 11867-11874.	3.4	17
219	Roles of regulatory T cells and IL-10 in virus-induced demyelination. Journal of Neuroimmunology, 2017, 308, 6-11.	2.3	17
220	Unresolved questions in the zoonotic transmission of MERS. Current Opinion in Virology, 2022, 52, 258-264.	5.4	17
221	Virus-Specific RNA Specified by the Group I and IV Temperature-Sensitive Mutants of Vesicular Stomatitis Virus. Intervirology, 1973, 2, 312-325.	2.8	15
222	The Middle East Respiratory Syndrome—How Worried Should We Be?. MBio, 2013, 4, .	4.1	15
223	Negative Regulation of Angiotensinogen Gene Expression by Glucocorticoids in Fetal Sheep Liver. Pediatric Research, 1991, 30, 256-259.	2.3	14
224	Prevention of Cytotoxic T Cell Escape Using a Heteroclitic Subdominant Viral T Cell Determinant. PLoS Pathogens, 2008, 4, e1000186.	4.7	14
225	Pathogenesis of Human Coronaviruses Other than Severe Acute Respiratory Syndrome Coronavirus. , 0, , 313-324.		14
226	RBD-mRNA vaccine induces broadly neutralizing antibodies against Omicron and multiple other variants and protects mice from SARS-CoV-2 challenge. Translational Research, 2022, 248, 11-21.	5.0	13
227	Middle East respiratory syndrome in the shadow of Ebola. Lancet Respiratory Medicine,the, 2015, 3, 100-102.	10.7	12
228	Testing COVID-19 therapies to prevent progression of mild disease. Lancet Infectious Diseases, The, 2020, 20, 1367.	9.1	12
229	Coronavirus-specific antibody production in middle-aged mice requires phospholipase A2G2D. Journal of Clinical Investigation, 2021, 131, .	8.2	12
230	Vaccine against Middle East respiratory syndrome coronavirus. Lancet Infectious Diseases, The, 2019, 19, 1054-1055.	9.1	11
231	Localization of Virus and Antibody Response in Mice Infected Persistently with MHV-JHM. Advances in Experimental Medicine and Biology, 1990, 276, 573-578.	1.6	11
232	Coronavirus Accessory Proteins. , 2014, , 235-244.		10
233	Coronavirus Replicative Proteins. , 2014, , 65-81.		10
234	Coronaviruses of Domestic Livestock and Poultry: Interspecies Transmission, Pathogenesis, and Immunity. , 0, , 279-298.		10

#	Article	IF	CITATIONS
235	Middle East Respiratory Syndrome Coronavirus Gene 5 Modulates Pathogenesis in Mice. Journal of Virology, 2021, 95, .	3.4	10
236	Longevity of Middle East Respiratory Syndrome Coronavirus Antibody Responses in Humans, Saudi Arabia. Emerging Infectious Diseases, 2021, 27, .	4.3	10
237	Binding of a pyrimidine RNA base-mimic to SARS-CoV-2 nonstructural protein 9. Journal of Biological Chemistry, 2021, 297, 101018.	3.4	10
238	Recombinant Hepatitis A Virus Antigen: Improved Production and Utility in Diagnostic Immunoassays. Journal of Clinical Microbiology, 1998, 36, 2014-2018.	3.9	10
239	PSEUDOMONAS BURSITIS: INOCULATION FROM A CATFISH. Pediatric Infectious Disease Journal, 1985, 4, 693.	2.0	9
240	Structural and Functional Correlates of Enhanced Antiviral Immunity Generated by Heteroclitic CD8 T Cell Epitopes. Journal of Immunology, 2014, 192, 5245-5256.	0.8	9
241	Middle East Respiratory Syndrome Coronavirus Seropositivity in Camel Handlers and Their Families, Pakistan. Emerging Infectious Diseases, 2019, 25, .	4.3	9
242	Test-based de-isolation in COVID-19 immunocompromised patients: Cycle threshold value versus SARS-CoV-2 viral culture. International Journal of Infectious Diseases, 2021, 108, 112-115.	3.3	9
243	Molecular Mimicry between S Peplomer Proteins of Coronaviruses (MHV, BCV, TGEV and IBV) and Fc Receptor. Advances in Experimental Medicine and Biology, 1994, 342, 183-188.	1.6	9
244	Mouse Hepatitis Virus and Herpes Simplex Virus Move along Different CNS Pathways. Advances in Experimental Medicine and Biology, 1994, 342, 313-318.	1.6	9
245	An Introduction to Nidoviruses. , 0, , 1-13.		9
246	Engineering viral genomics and nano-liposomes in microfluidic platforms for patient-specific analysis of SARS-CoV-2 variants. Theranostics, 2022, 12, 4779-4790.	10.0	9
247	Role of IFN-Î ³ responsiveness in CD8 T cell-mediated viral clearance and demyelination in coronavirus-infected mice. Journal of Neuroimmunology, 2008, 194, 18-26.	2.3	8
248	Phenotypic and Functional Characteristics of a Novel Influenza Virus Hemagglutinin-Specific Memory NK Cell. Journal of Virology, 2021, 95, .	3.4	8
249	Genomics and Evolution of the Nidovirales. , 0, , 15-28.		8
250	Effective Interferon Lambda Treatment Regimen To Control Lethal MERS-CoV Infection in Mice. Journal of Virology, 2022, 96, e0036422.	3.4	8
251	Confronting the persisting threat of the Middle East respiratory syndrome to global health security. Lancet Infectious Diseases, The, 2020, 20, 158-160.	9.1	7
252	Middle East respiratory syndrome coronavirus Spike protein variants exhibit geographic differences in virulence. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7

#	Article	IF	CITATIONS
253	Nidovirus Entry into Cells. , 2014, , 157-178.		6
254	Neurotropic Coronavirus Infections. , 2016, , 115-148.		6
255	An assessment of the impact of recommended anesthesia work area cleaning procedures on intraoperative SARS-CoV-2 contamination, a case-series analysis. Journal of Clinical Anesthesia, 2021, 73, 110350.	1.6	6
256	A SARS-CoV–Specific Protein Enhances Virulence of an Attenuated Strain of Mouse Hepatitis Virus. Advances in Experimental Medicine and Biology, 2006, 581, 493-498.	1.6	6
257	Evidence-based intraoperative infection control measures plus feedback are associated with attenuation of severe acute respiratory syndrome coronavirus-2 detection in operating rooms. British Journal of Anaesthesia, 2022, 129, e29-e32.	3.4	6
258	Fusiform Bacterial Sepsis. Clinical Pediatrics, 1989, 28, 423-425.	0.8	5
259	Selection of and evasion from cytotoxic T cell responses in the central nervous system. Advances in Virus Research, 2001, 56, 219-242.	2.1	5
260	Equine Immunoglobulin and Equine Neutralizing F(ab′)2 Protect Mice from West Nile Virus Infection. Viruses, 2016, 8, 332.	3.3	5
261	Multiplex Screening Assay for Identifying Cytotoxic CD8+ T Cell Epitopes. Frontiers in Immunology, 2020, 11, 400.	4.8	5
262	Middle East respiratory syndrome coronavirus – The need for global proactive surveillance, sequencing and modeling. Travel Medicine and Infectious Disease, 2021, 43, 102118.	3.0	5
263	Analysis of Nonessential Gene Function in Recombinant MHV-JHM. Advances in Experimental Medicine and Biology, 2001, 494, 83-89.	1.6	5
264	Nidovirus Genome Organization and Expression Mechanisms. , 0, , 29-46.		5
265	Not your usual tRNA synthetase: hWARS serves as an enterovirus entry factor. Journal of Clinical Investigation, 2018, 128, 4767-4769.	8.2	5
266	Development of a Saliva-Optimized RT-LAMP Assay for SARS-CoV-2. Journal of Biomolecular Techniques, 2021, 32, 102-113.	1.5	5
267	Lipid nanoparticle-mRNA: another step in the fight against COVID-19. Cell Research, 2022, 32, 421-422.	12.0	5
268	Antiviral Antibodies Are Necessary To Prevent Cytotoxic T-Lymphocyte Escape in Mice Infected with a Coronavirus. Journal of Virology, 2007, 81, 13291-13298.	3.4	4
269	Prostaglandin D2 signaling in dendritic cells is critical for the development of EAE. Journal of Autoimmunity, 2020, 114, 102508.	6.5	4
270	MERS-CoV in Africa—an enigma with relevance to COVID-19. Lancet Infectious Diseases, The, 2021, 21, 303-305.	9.1	4

#	Article	IF	CITATIONS
271	Molecular Biology and Pathogenesis of Roniviruses. , 0, , 361-377.		4
272	The Arterivirus Replicase. , 0, , 83-101.		4
273	Alveolar macrophages protect mice from MERS-CoV-induced pneumonia and severe disease. Veterinary Pathology, 2022, 59, 627-638.	1.7	4
274	Development of transgenic mice expressing a coronavirus-specific public CD4 T cell receptor. Journal of Immunological Methods, 2013, 396, 56-64.	1.4	3
275	Arterivirus Structural Proteins and Assembly. , 0, , 211-234.		3
276	Torovirus Pathogenesis and Immune Responses. , 0, , 351-359.		3
277	Research Driven by Curiosity: The Journey from Basic Molecular Biology and Virology to Studies of Human Pathogenic Coronaviruses. PLoS Pathogens, 2015, 11, e1005023.	4.7	3
278	Preferential Infection of Mature Dendritic Cells by the JHM Strain of Mouse Hepatitis Virus. Advances in Experimental Medicine and Biology, 2006, 581, 411-414.	1.6	3
279	Vaccines for Severe Acute Respiratory Syndrome Virus and Other Coronaviruses. , 0, , 379-407.		3
280	Molecular Biology and Evolution of Toroviruses. , 0, , 133-146.		3
281	Measurement of CD8 and CD4 T Cell Responses in Mouse Lungs. Bio-protocol, 2014, 4, .	0.4	3
282	Differential Effects of Prostaglandin D 2 Signaling on Macrophages and Microglia in Murine Coronavirus Encephalomyelitis. MBio, 2021, 12, e0196921.	4.1	2
283	Coronaviruses, Including Severe Acute Respiratory Syndrome(SARS)–Associated Coronavirus. , 2010, , 2187-2194.		2
284	Host Cell Responses to Coronavirus Infections. , 0, , 245-258.		2
285	Pathogenesis of Murine Coronavirus Infection. , 0, , 259-278.		2
286	HCoV-OC43–Induced Encephalitis is in Part Immune-Mediated. Advances in Experimental Medicine and Biology, 2006, 581, 531-534.	1.6	2
287	Virus Infection and Titration of SARS-CoV in Mouse Lung. Bio-protocol, 2014, 4, .	0.4	2
288	Simultaneous Intranasal/Intravascular Antibody Labeling of CD4+ T Cells in Mouse Lungs. Bio-protocol, 2017, 7, .	0.4	2

#	Article	IF	CITATIONS
289	Virus-Specific Regulatory T Cells Persist as Memory in a Neurotropic Coronavirus Infection. Journal of Immunology, 2022, 208, 1989-1997.	0.8	2
290	Angiotensin-Converting Enzyme 2, the Cellular Receptor for Severe Acute Respiratory Syndrome Coronavirus and Human Coronavirus NL63. , 0, , 147-156.		1
291	Arterivirus Pathogenesis and Immune Response. , 0, , 325-337.		1
292	Cell Biology of Nidovirus Replication Complexes. , 0, , 103-113.		1
293	Emerging Nidovirus Infections. , 0, , 409-418.		1
294	Genetics and Reverse Genetics of Nidoviruses. , 0, , 47-64.		1
295	RNA Signals Regulating Nidovirus RNA Synthesis. , 0, , 115-131.		1
296	The Role of T Cells in Corona-Virus-Induced Demyelination. , 2005, , 747-757.		0
297	Glucocorticoid contribution to lymphopaenia and immunpathology in patients with SARS. Nature Reviews Immunology, 2006, 6, 334-334.	22.7	ο
298	Neurotropic coronavirus infections. , 2008, , 50-74.		0
299	Supramolecular Architecture of the Coronavirus Particle. , 2014, , 201-210.		ο
300	Suspected COVID-19 Reinfections at a Tertiary Care Center, Iowa, 2020. Open Forum Infectious Diseases, 2021, 8, ofab188.	0.9	0
301	Axons and Neurons in Corona Virus-Induced Demyelination. , 2005, , 737-745.		ο
302	The Immune Response to Coronaviruses. , 0, , 339-349.		0
303	Severe Acute Respiratory Syndrome: Epidemiology, Pathogenesis, and Animal Models. , 0, , 299-311.		0
304	An open source and convenient method for the wide-spread testing of COVID-19 using deep throat sputum samples. PeerJ, 2022, 10, e13277.	2.0	0