
Brian D Holt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9198140/publications.pdf Version: 2024-02-01

RDIAN D HOLT

#	Article	IF	CITATIONS
1	Ultra-low binder content 3D printed calcium phosphate graphene scaffolds as resorbable, osteoinductive matrices that support bone formation in vivo. Scientific Reports, 2022, 12, 6960.	1.6	9
2	Bioactive, Ionâ€Releasing PMMA Bone Cement Filled with Functional Graphenic Materials. Advanced Healthcare Materials, 2021, 10, e2001189.	3.9	15
3	The Blanket Effect: How Turning the World Upside Down Reveals the Nature of Graphene Oxide Cytocompatibility. Advanced Healthcare Materials, 2021, 10, e2001761.	3.9	5
4	Polyester functional graphenic materials as a mechanically enhanced scaffold for tissue regeneration. RSC Advances, 2020, 10, 8548-8557.	1.7	6
5	Covalent conjugation of bioactive peptides to graphene oxide for biomedical applications. Biomaterials Science, 2019, 7, 3876-3885.	2.6	46
6	Phosphate modified graphene oxide: Long–term biodegradation and cytocompatibility. Carbon, 2019, 154, 342-349.	5.4	14
7	Functional Graphenic Materials That Seal Condenser Tube Leaks in Situ. ACS Applied Materials & Interfaces, 2019, 11, 20881-20887.	4.0	3
8	Therapeutic Methacrylic Comonomers for Covalently Controlled Release from Mechanically Robust Bone Cement: Kinetics and Structure–Function Relationships. Macromolecules, 2019, 52, 3775-3786.	2.2	6
9	Injectable amine functionalized graphene and chondroitin sulfate hydrogel with potential for cartilage regeneration. Journal of Materials Chemistry B, 2019, 7, 2442-2453.	2.9	30
10	Phosphate graphene as an intrinsically osteoinductive scaffold for stem cell-driven bone regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4855-4860.	3.3	59
11	Functional Graphenic Materials, Graphene Oxide, and Graphene as Scaffolds for Bone Regeneration. Regenerative Engineering and Translational Medicine, 2019, 5, 190-209.	1.6	33
12	Dispersed single wall carbon nanotubes do not impact mitochondria structure or function, but technical issues during analysis could yield incorrect results. Journal of Materials Chemistry B, 2017, 5, 369-374.	2.9	4
13	Peptideâ€functionalized reduced graphene oxide as a bioactive mechanically robust tissue regeneration scaffold. Polymer International, 2017, 66, 1190-1198.	1.6	15
14	Covalently-controlled drug delivery via therapeutic methacrylic tissue adhesives. Journal of Materials Chemistry B, 2017, 5, 7743-7755.	2.9	9
15	Cover Image, Volume 66, Issue 8. Polymer International, 2017, 66, i-i.	1.6	0
16	Graphene oxide as a scaffold for bone regeneration. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1437.	3.3	63
17	Developing <i>Xenopus</i> embryos recover by compacting and expelling single wall carbon nanotubes. Journal of Applied Toxicology, 2016, 36, 579-585.	1.4	5
18	In It for the Long Haul: The Cytocompatibility of Aged Graphene Oxide and Its Degradation Products. Advanced Healthcare Materials, 2016, 5, 3056-3066.	3.9	32

Brian D Holt

#	Article	IF	CITATIONS
19	Distribution of single wall carbon nanotubes in the Xenopus laevis embryo after microinjection. Journal of Applied Toxicology, 2016, 36, 568-578.	1.4	6
20	Delivering Single-Walled Carbon Nanotubes to the Nucleus Using Engineered Nuclear Protein Domains. ACS Applied Materials & Interfaces, 2016, 8, 3524-3534.	4.0	31
21	Differential sub-cellular processing of single-wall carbon nanotubes via interfacial modifications. Journal of Materials Chemistry B, 2015, 3, 6274-6284.	2.9	7
22	Subcellular Partitioning and Analysis of Gd ³⁺ -Loaded Ultrashort Single-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2015, 7, 14593-14602.	4.0	12
23	Actin Reorganization through Dynamic Interactions with Single-Wall Carbon Nanotubes. ACS Nano, 2014, 8, 188-197.	7.3	41
24	Decoding membrane- versus receptor-mediated delivery of single-walled carbon nanotubes into macrophages using modifications of nanotube surface coatings and cell activity. Soft Matter, 2013, 9, 758-764.	1.2	28
25	Cells Take up and Recover from Protein-Stabilized Single-Wall Carbon Nanotubes with Two Distinct Rates. ACS Nano, 2012, 6, 3481-3490.	7.3	41
26	Streptokinase Loading in Liposomes for Vascular Targeted Nanomedicine Applications: Encapsulation Efficiency and Effects of Processing. Journal of Biomaterials Applications, 2012, 26, 509-527.	1.2	11
27	Not all protein-mediated single-wall carbon nanotube dispersions are equally bioactive. Nanoscale, 2012, 4, 7425.	2.8	32
28	Altered Cell Mechanics from the Inside: Dispersed Single Wall Carbon Nanotubes Integrate with and Restructure Actin. Journal of Functional Biomaterials, 2012, 3, 398-417.	1.8	30
29	Single wall carbon nanotubes enter cells by endocytosis and not membrane penetration. Journal of Nanobiotechnology, 2011, 9, 45.	4.2	122
30	Quantification of Uptake and Localization of Bovine Serum Albumin‣tabilized Singleâ€Wall Carbon Nanotubes in Different Human Cell Types. Small, 2011, 7, 2348-2355.	5.2	101
31	Carbon Nanotubes Reorganize Actin Structures in Cells and <i>ex Vivo</i> . ACS Nano, 2010, 4, 4872-4878.	7.3	128