Ulvi Bayraktutan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/919804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MicroRNA: An Emerging Predictive, Diagnostic, Prognostic and Therapeutic Strategy in Ischaemic Stroke. Cellular and Molecular Neurobiology, 2022, 42, 1301-1319.	1.7	37
2	Treatment with outgrowth endothelial cells protects cerebral barrier against ischemic injury. Cytotherapy, 2022, 24, 489-499.	0.3	12
3	Outgrowth endothelial progenitor cells restore cerebral barrier function following ischaemic damage: The impact of NOX2 inhibition. European Journal of Neuroscience, 2022, 55, 1658-1670.	1.2	3
4	Inhibition of oxidative stress delays senescence and augments functional capacity of endothelial progenitor cells. Brain Research, 2022, 1787, 147925.	1.1	6
5	Establishment of an In Vitro Model of Human Blood–Brain Barrier to Study the Impact of Ischemic Injury. Methods in Molecular Biology, 2022, , 143-155.	0.4	5
6	Protein kinase C-β distinctly regulates blood-brain barrier-forming capacity of Brain Microvascular endothelial cells and outgrowth endothelial cells. Metabolic Brain Disease, 2022, 37, 1815-1827.	1.4	7
7	The secretome of endothelial progenitor cells: a potential therapeutic strategy for ischemic stroke. Neural Regeneration Research, 2021, 16, 1483.	1.6	24
8	Therapeutic hypothermia augments the restorative effects of PKC-β and Nox2 inhibition on an in vitro model of human blood–brain barrier. Metabolic Brain Disease, 2021, 36, 1817-1832.	1.4	10
9	Urokinase Plasminogen Activator: A Potential Thrombolytic Agent for Ischaemic Stroke. Cellular and Molecular Neurobiology, 2020, 40, 347-355.	1.7	33
10	Elevated plasminogen activators are associated with hematoma progression in spontaneous intracerebral hemorrhage. Brain Hemorrhages, 2020, 1, 75-79.	0.4	3
11	Endothelial progenitor cells, potential biomarkers for diagnosis and prognosis of ischemic stroke: protocol for an observational case-control study. Neural Regeneration Research, 2020, 15, 1300.	1.6	15
12	Outgrowth endothelial cells form a functional cerebral barrier and restore its integrity after damage. Neural Regeneration Research, 2020, 15, 1071.	1.6	26
13	Endothelial progenitor cells: Potential novel therapeutics for ischaemic stroke. Pharmacological Research, 2019, 144, 181-191.	3.1	57
14	Suppression of PKC-α attenuates TNF-α-evoked cerebral barrier breakdown via regulations of MMP-2 and plasminogen–plasmin system. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1354-1366.	1.8	20
15	Increases in intracellular calcium perturb blood–brain barrier via protein kinase C-alpha and apoptosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 56-71.	1.8	33
16	Inhibition of TNF-α protects in vitro brain barrier from ischaemic damage. Molecular and Cellular Neurosciences, 2015, 69, 65-79.	1.0	36
17	Inhibition of Rhoâ€kinase protects cerebral barrier from ischaemiaâ€evoked injury through modulations of endothelial cell oxidative stress and tight junctions. Journal of Neurochemistry, 2014, 129, 816-826.	2.1	86
18	Attenuation of urokinase activity during experimental ischaemia protects the cerebral barrier from damage through regulation of matrix metalloproteinaseâ€2 and <scp>NAD</scp> (P)H oxidase. European Journal of Neuroscience, 2014, 39, 2119-2128.	1.2	14

ULVI BAYRAKTUTAN

#	Article	IF	CITATIONS
19	Hyperglycaemia promotes human brain microvascular endothelial cell apoptosis via induction of protein kinase C-I²I and prooxidant enzyme NADPH oxidase. Redox Biology, 2014, 2, 694-701.	3.9	59
20	NADPH oxidase mediates TNF-α-evoked in vitro brain barrier dysfunction: roles of apoptosis and time. Molecular and Cellular Neurosciences, 2014, 61, 72-84.	1.0	39
21	Epidemiology, Pathophysiology, and Treatment of Hypertension in Ischaemic Stroke Patients. Journal of Stroke and Cerebrovascular Diseases, 2013, 22, e4-e14.	0.7	33
22	PKC-β Exacerbates in vitro Brain Barrier Damage in Hyperglycemic Settings via Regulation of RhoA/Rho-kinase/MLC2 Pathway. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1928-1936.	2.4	56
23	Hyperglycaemia promotes cerebral barrier dysfunction through activation of protein kinase Câ€Ĥ2. Diabetes, Obesity and Metabolism, 2013, 15, 993-999.	2.2	72
24	Current Therapeutic Strategies to Mitigate the eNOS Dysfunction in Ischaemic Stroke. Cellular and Molecular Neurobiology, 2012, 32, 319-336.	1.7	48
25	Role of Gender, Smoking Profile, Hypertension, and Diabetes on Saphenous Vein and Internal Mammary Artery Endothelial Relaxation in Patients with Coronary Artery Bypass Grafting. Oxidative Medicine and Cellular Longevity, 2010, 3, 199-205.	1.9	17
26	Small GTPase RhoA and Its Effector Rho Kinase Mediate Oxygen Glucose Deprivation-Evoked In Vitro Cerebral Barrier Dysfunction. Stroke, 2010, 41, 2056-2063.	1.0	54
27	Effects of Antioxidants on Endothelial Function in Human Saphenous Vein in an Ex vivo Model. Angiology, 2009, 60, 448-454.	0.8	3
28	Oxidative Stress and Its Role in the Pathogenesis of Ischaemic Stroke. International Journal of Stroke, 2009, 4, 461-470.	2.9	763
29	Antioxidants attenuate hyperglycaemiaâ€mediated brain endothelial cell dysfunction and blood–brain barrier hyperpermeability. Diabetes, Obesity and Metabolism, 2009, 11, 480-490.	2.2	92
30	Risk Factors for Ischaemic Stroke. International Journal of Stroke, 2008, 3, 105-116.	2.9	156
31	Differential mechanisms of angiotensin II and PDGF-BB on migration and proliferation of coronary artery smooth muscle cells. Journal of Molecular and Cellular Cardiology, 2008, 45, 198-208.	0.9	10
32	N-Acetylcysteine Does Not Improve the Endothelial and Smooth Muscle Function in the Human Saphenous Vein. Vascular and Endovascular Surgery, 2007, 41, 239-245.	0.3	8
33	Internal mammary artery smooth muscle cells resist migration and possess high antioxidant capacity. Cardiovascular Research, 2006, 72, 60-68.	1.8	18
34	Blockade of angiotensin II provides additional benefits in hypertension- and ageing-related cardiac and vascular dysfunctions beyond its blood pressure-lowering effects. Journal of Hypertension, 2005, 23, 2219-2227.	0.3	30
35	Coronary microvascular endothelial cell growth regulates expression of the gene encoding p22-phox. Free Radical Biology and Medicine, 2005, 39, 1342-1352.	1.3	20
36	Reactive Oxygen Species, Nitric Oxide and Hypertensive Endothelial Dysfunction. Current Hypertension Reviews, 2005, 1, 201-215.	0.5	12

Ulvi Bayraktutan

#	Article	IF	CITATIONS
37	High glucose mediates pro-oxidant and antioxidant enzyme activities in coronary endothelial cells. Diabetes, Obesity and Metabolism, 2004, 6, 432-441.	2.2	75
38	Antioxidant vitamins C and E ameliorate hyperglycaemia-induced oxidative stress in coronary endothelial cells. Diabetes, Obesity and Metabolism, 2004, 6, 442-451.	2.2	39
39	Nitric oxide synthase and NAD(P)H oxidase modulate coronary endothelial cell growth. Journal of Molecular and Cellular Cardiology, 2004, 36, 277-286.	0.9	20
40	Vitamins Reverse Endothelial Dysfunction Through Regulation of eNOS and NAD(P)H Oxidase Activities. Hypertension, 2003, 41, 534-539.	1.3	207
41	Impaired activities of antioxidant enzymes elicit endothelial dysfunction in spontaneous hypertensive rats despite enhanced vascular nitric oxide generation. Cardiovascular Research, 2003, 59, 488-500.	1.8	128
42	Effects of angiotensin II on nitric oxide generation in growing and resting rat aortic endothelial cells. Journal of Hypertension, 2003, 21, 2093-2101.	0.3	15
43	Effects of Angiotensin II on Nitric Oxide Generation in Proliferating and Quiescent Rat Coronary Microvascular Endothelial Cells. Hypertension Research, 2003, 26, 749-757.	1.5	23
44	Aprotinin impairs coronary endothelial function and down-regulates endothelial NOS in rat coronary microvascular endothelial cells. Cardiovascular Research, 2002, 55, 830-837.	1.8	24
45	Molecular Characterization and Localization of the NAD(P)H Oxidase Components gp91- <i>phox</i> and p22- <i>phox</i> in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 1903-1911.	1.1	220
46	Phenotypic changes in rat and guinea pig coronary microvascular endothelium after culture: loss of nitric oxide synthase activity. Cardiovascular Research, 1999, 42, 794-804.	1.8	18
47	Expression of a functional neutrophil-type NADPH oxidase in cultured rat coronary microvascular endothelial cells. Cardiovascular Research, 1998, 38, 256-262.	1.8	168
48	Selective dysregulation of nitric oxide synthase type 3 in cardiac myocytes but not coronary microvascular endothelial cells of spontaneously hypertensive rat. Cardiovascular Research, 1998, 38, 719-726.	1.8	45
49	Expression of the Human Gene Encoding Urokinase Plasminogen Activator Receptor Is Activated by Disruption of the Cytoskeleton. Experimental Cell Research, 1995, 221, 486-495.	1.2	18