Elzbieta Salinska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9198023/publications.pdf

Version: 2024-02-01

759190 677123 513 26 12 22 citations h-index g-index papers 26 26 26 953 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The role of excitotoxicity in neurodegeneration. Folia Neuropathologica, 2005, 43, 322-39.	1.2	80
2	MicroRNA Signatures and Molecular Subtypes of Glioblastoma: The Role of Extracellular Transfer. Stem Cell Reports, 2017, 8, 1497-1505.	4.8	58
3	MicroRNA in Brain pathology: Neurodegeneration the Other Side of the Brain Cancer. Non-coding RNA, 2019, 5, 20.	2.6	54
4	Modulation of Glutamate Transport and Receptor Binding by Glutamate Receptor Antagonists in EAE Rat Brain. PLoS ONE, 2014, 9, e113954.	2.5	42
5	Hyperbaric oxygen and hyperbaric air treatment result in comparable neuronal death reduction and improved behavioral outcome after transient forebrain ischemia in the gerbil. Experimental Brain Research, 2013, 224, 1-14.	1.5	33
6	The role of group I metabotropic glutamate receptors in memory consolidation and reconsolidation in the passive avoidance task in 1-day-old chicks. Neurochemistry International, 2006, 48, 447-452.	3.8	26
7	Metabotropic glutamate receptors (mGluRs) are involved in early phase of memory formation: possible role of modulation of glutamate release. Neurochemistry International, 2003, 43, 469-474.	3.8	24
8	MicroRNA-451 Inhibits Migration of Glioblastoma while Making It More Susceptible to Conventional Therapy. Non-coding RNA, 2019, 5, 25.	2.6	22
9	The activation of group II metabotropic glutamate receptors protects neonatal rat brains from oxidative stress injury after hypoxia-ischemia. PLoS ONE, 2018, 13, e0200933.	2.5	20
10	Hypobaric Hypoxia Postconditioning Reduces Brain Damage and Improves Antioxidative Defense in the Model of Birth Asphyxia in 7-Day-Old Rats. Neurochemical Research, 2014, 39, 68-75.	3.3	17
11	Hyperbaric oxygen and hyperbaric air preconditioning induces ischemic tolerance to transient forebrain ischemia in the gerbil. Brain Research, 2016, 1648, 257-265.	2.2	16
12	1-Methyl-1,2,3,4-tetrahydroisoquinoline and established uncompetitive NMDA receptor antagonists induce tolerance to excitotoxicity. Pharmacological Reports, 2010, 62, 1041-1050.	3.3	14
13	Dantrolene antagonizes the glycineB site of the NMDA receptor. Neuroscience Letters, 2008, 432, 137-140.	2.1	11
14	Lateralization of housekeeping genes in the brain of one-day old chicks. Gene Expression Patterns, 2017, 25-26, 85-91.	0.8	10
15	Pretreatment with Group II Metabotropic Glutamate Receptor Agonist LY379268 Protects Neonatal Rat Brains from Oxidative Stress in an Experimental Model of Birth Asphyxia. Brain Sciences, 2018, 8, 48.	2.3	10
16	Hypoxic Roadmap of Glioblastomaâ€"Learning about Directions and Distances in the Brain Tumor Environment. Cancers, 2020, 12, 1213.	3.7	10
17	Pretreatment with mGluR2 or mGluR3 Agonists Reduces Apoptosis Induced by Hypoxia-Ischemia in Neonatal Rat Brains. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-10.	4.0	10
18	Differential involvement of mGluR1 and mGluR5 in memory reconsolidation and retrieval in a passive avoidance task in 1-day old chicks. Neurobiology of Learning and Memory, 2012, 97, 165-172.	1.9	9

#	Article	IF	CITATION
19	Tetrabromobisphenol A-induced depolarization of rat cerebellar granule cells: exÂvivo and inÂvitro studies. Chemosphere, 2019, 223, 64-73.	8.2	8
20	N-Acetylaspartylglutamate (NAAG) Pretreatment Reduces Hypoxic-Ischemic Brain Damage and Oxidative Stress in Neonatal Rats. Antioxidants, 2020, 9, 877.	5.1	8
21	The Mechanism of the Neuroprotective Effect of Kynurenic Acid in the Experimental Model of Neonatal Hypoxia–Ischemia: The Link to Oxidative Stress. Antioxidants, 2021, 10, 1775.	5.1	8
22	Combining hypobaric hypoxia or hyperbaric oxygen postconditioning with memantine reduces neuroprotection in 7-day-old rat hypoxia-ischemia. Pharmacological Reports, 2016, 68, 1076-1083.	3.3	7
23	Group II Metabotropic Glutamate Receptors Reduce Apoptosis and Regulate BDNF and GDNF Levels in Hypoxic-Ischemic Injury in Neonatal Rats. International Journal of Molecular Sciences, 2022, 23, 7000.	4.1	6
24	Hypobaric Preconditioning Modifies Group I mGluRs Signaling in Brain Cortex. Neurochemical Research, 2015, 40, 2200-2210.	3.3	4
25	The involvement of TRP channels in memory formation and task retrieval in a passive avoidance task in one-day old chicks. Neurobiology of Learning and Memory, 2020, 171, 107209.	1.9	3
26	Antidepressant-like and anxiolytic-like effects of mild hypobaric hypoxia in mice: possible involvement of neuropeptide Y. Acta Neurobiologiae Experimentalis, 2015, 75, 364-71.	0.7	3