
Subhadra C Gunawardana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9197917/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brown Adipose Expansion and Remission of Glycemic Dysfunction in Obese SM/J Mice. Cell Reports, 2020, 33, 108237.	6.4	9
2	Adipose tissue NAD ⁺ biosynthesis is required for regulating adaptive thermogenesis and whole-body energy homeostasis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23822-23828.	7.1	48
3	Insulin-Independent Reversal of Type-1 Diabetes Following Transplantation of Adult Brown Adipose Tissue Supplemented With IGF-1. Transplantation Direct, 2019, 5, e500.	1.6	12
4	Insulin-independent reversal of type 1 diabetes in nonobese diabetic mice with brown adipose tissue transplant. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E1043-E1055.	3.5	75
5	Ablation of PRDM16 and Beige Adipose Causes Metabolic Dysfunction and a Subcutaneous to Visceral Fat Switch. Cell, 2014, 156, 304-316.	28.9	719
6	Benefits of healthy adipose tissue in the treatment of diabetes. World Journal of Diabetes, 2014, 5, 420.	3.5	16
7	Therapeutic value of brown adipose tissue. Adipocyte, 2012, 1, 250-255.	2.8	7
8	Reversal of Type 1 Diabetes in Mice by Brown Adipose Tissue Transplant. Diabetes, 2012, 61, 674-682.	0.6	231
9	Adipose Tissue, Hormones, and Treatment of Type 1 Diabetes. Current Diabetes Reports, 2012, 12, 542-550.	4.2	8
10	Subcutaneous transplantation of embryonic pancreas for correction of type 1 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E323-E332.	3.5	11
11	Dimethyl amiloride improves glucose homeostasis in mouse models of type 2 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E1097-E1108.	3.5	8
12	Direct Effect of Cholesterol on Insulin Secretion. Diabetes, 2007, 56, 2328-2338.	0.6	260
13	Mechanisms of Time-Dependent Potentiation of Insulin Release: Involvement of Nitric Oxide Synthase. Diabetes, 2006, 55, 1029-1033.	0.6	23
14	Amiloride derivatives enhance insulin release in pancreatic islets from diabetic mice. BMC Endocrine Disorders, 2005, 5, 9.	2.2	8
15	IMAGING BETA CELL DEVELOPMENT IN REAL-TIME USING PANCREATIC EXPLANTS FROM MICE WITH GREEN FLUORESCENT PROTEIN–LABELED PANCREATIC BETA CELLS. In Vitro Cellular and Developmental Biology - Animal, 2005, 41, 7.	1.5	7
16	IMAGING BETA-CELL DEVELOPMENT IN REAL-TIME USING PANCREATIC EXPLANTS FROM MICE WITH GREEN FLUORESCENT PROTEIN-LABELED PANCREATIC BETA CELLS. In Vitro Cellular and Developmental Biology - Animal, 2005, , .	1.5	0
17	Anaplerotic input is sufficient to induce time-dependent potentiation of insulin release in rat pancreatic islets. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E828-E833.	3.5	11
18	Nutrient-stimulated insulin secretion in mouse islets is critically dependent on intracellular pH. BMC Endocrine Disorders, 2004, 4, 1.	2.2	13

#	Article	IF	CITATIONS
19	Quantitative Imaging of Subcellular Signal Transduction. Microscopy and Microanalysis, 2004, 10, 1286-1287.	0.4	0
20	Intracellular pH Plays a Critical Role in Glucose-Induced Time-Dependent Potentiation of Insulin Release in Rat Islets. Diabetes, 2002, 51, 105-113.	0.6	40
21	Triggering and Augmentation Mechanisms, Granule Pools, and Biphasic Insulin Secretion. Diabetes, 2002, 51, S83-S90.	0.6	225