
Myoseon Jang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9197830/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heterogeneous Atmospheric Aerosol Production by Acid-Catalyzed Particle-Phase Reactions. Science, 2002, 298, 814-817.	6.0	939
2	Formation of Oligomers in Secondary Organic Aerosol. Environmental Science & Technology, 2004, 38, 1428-1434.	4.6	494
3	Characterization of Secondary Aerosol from the Photooxidation of Toluene in the Presence of NOxand 1-Propene. Environmental Science & Technology, 2001, 35, 3626-3639.	4.6	327
4	Atmospheric Secondary Aerosol Formation by Heterogeneous Reactions of Aldehydes in the Presence of a Sulfuric Acid Aerosol Catalyst. Environmental Science & Technology, 2001, 35, 4758-4766.	4.6	263
5	Differential toxicities of fine particulate matters from various sources. Scientific Reports, 2018, 8, 17007.	1.6	233
6	Aerosol Formation from the Reaction of α-Pinene and Ozone Using a Gas-Phase Kinetics-Aerosol Partitioning Model. Environmental Science & Technology, 1999, 33, 1430-1438.	4.6	226
7	Newly characterized products and composition of secondary aerosols from the reaction of $\hat{I}\pm$ -pinene with ozone. Atmospheric Environment, 1999, 33, 459-474.	1.9	225
8	Dynamic light absorption of biomass-burning organic carbon photochemically aged under natural sunlight. Atmospheric Chemistry and Physics, 2014, 14, 1517-1525.	1.9	193
9	Effect of acidic seed on biogenic secondary organic aerosol growth. Atmospheric Environment, 2003, 37, 4287-4299.	1.9	150
10	Particle Growth by Acid-Catalyzed Heterogeneous Reactions of Organic Carbonyls on Preexisting Aerosols. Environmental Science & Technology, 2003, 37, 3828-3837.	4.6	140
11	A Thermodynamic Approach Using Group Contribution Methods to Model the Partitioning of Semivolatile Organic Compounds on Atmospheric Particulate Matter. Environmental Science & Technology, 1997, 31, 2805-2811.	4.6	118
12	Products of Benz[a]anthracene Photodegradation in the Presence of Known Organic Constituents of Atmospheric Aerosols. Environmental Science & Technology, 1997, 31, 1046-1053.	4.6	105
13	Light absorption coefficient measurement of SOA using a UV–Visible spectrometer connected with an integrating sphere. Atmospheric Environment, 2011, 45, 4263-4271.	1.9	96
14	A Thermodynamic Approach for Modeling Partitioning of Semivolatile Organic Compounds on Atmospheric Particulate Matter:Â Humidity Effects. Environmental Science & Technology, 1998, 32, 1237-1243.	4.6	93
15	Organic aerosol growth by acid-catalyzed heterogeneous reactions of octanal in a flow reactor. Atmospheric Environment, 2003, 37, 2125-2138.	1.9	89
16	SOA formation from the photooxidation of $\hat{I}\pm$ -pinene in the presence of freshly emitted diesel soot exhaust. Atmospheric Environment, 2004, 38, 2597-2605.	1.9	78
17	Photochemical Products in Urban Mixtures Enhance Inflammatory Responses in Lung Cells. Inhalation Toxicology, 2004, 16, 107-114.	0.8	68
18	Benz[a]anthracene photodegradation in the presence of known organic constituents of atmospheric aerosols. Environmental Science & Technology, 1995, 29, 2654-2660.	4.6	61

MYOSEON JANG

#	Article	IF	CITATIONS
19	Atmospheric Organic Aerosol Production by Heterogeneous Acid-Catalyzed Reactions. ChemPhysChem, 2004, 5, 1646-1661.	1.0	60
20	Oxidative potential of secondary organic aerosols produced from photooxidation of different hydrocarbons using outdoor chamber under ambient sunlight. Atmospheric Environment, 2016, 131, 382-389.	1.9	60
21	Semiempirical Model for Organic Aerosol Growth by Acid-Catalyzed Heterogeneous Reactions of Organic Carbonyls. Environmental Science & Technology, 2005, 39, 164-174.	4.6	58
22	Heterogeneous SOA yield from ozonolysis of monoterpenes in the presence of inorganic acid. Atmospheric Environment, 2007, 41, 1483-1493.	1.9	54
23	Effects of particle acidity and UV light on secondary organic aerosol formation from oxidation of aromatics in the absence of NOx. Atmospheric Environment, 2007, 41, 7603-7613.	1.9	54
24	An SOA Model for Toluene Oxidation in the Presence of Inorganic Aerosols. Environmental Science & Technology, 2010, 44, 727-733.	4.6	54
25	Exposure of BEAS-2B Cells to Secondary Organic Aerosol Coated on Magnetic Nanoparticles. Chemical Research in Toxicology, 2006, 19, 1044-1050.	1.7	51
26	Heterogeneous Photo-oxidation of SO ₂ in the Presence of Two Different Mineral Dust Particles: Gobi and Arizona Dust. Environmental Science & Technology, 2017, 51, 9605-9613.	4.6	47
27	SOA Formation from Partitioning and Heterogeneous Reactions:Â Model Study in the Presence of Inorganic Species. Environmental Science & Technology, 2006, 40, 3013-3022.	4.6	41
28	Simulation of aromatic SOA formation using the lumping model integrated with explicit gas-phase kinetic mechanisms and aerosol-phase reactions. Atmospheric Chemistry and Physics, 2014, 14, 4013-4027.	1.9	40
29	Dynamic Oxidative Potential of Atmospheric Organic Aerosol under Ambient Sunlight. Environmental Science & Technology, 2018, 52, 7496-7504.	4.6	40
30	Acidity effects on the formation of α-pinene ozone SOA in the presence of inorganic seed. Atmospheric Environment, 2006, 40, 4370-4380.	1.9	37
31	Amorphous silica coatings on magnetic nanoparticles enhance stability and reduce toxicity to <i>in vitro</i> BEAS-2B cells. Inhalation Toxicology, 2011, 23, 532-543.	0.8	37
32	Secondary organic aerosol formation from photooxidation of a mixture of dimethyl sulfide and isoprene. Atmospheric Environment, 2012, 46, 271-278.	1.9	37
33	Dithiothreitol activity by particulate oxidizers of SOA produced from photooxidation of hydrocarbons under varied NO _{<i>x</i>} levels. Atmospheric Chemistry and Physics. 2017. 17. 9965-9977.	1.9	37
34	Role of sea salt aerosols in the formation of aromatic secondary organic aerosol: yields and hygroscopic properties. Environmental Chemistry, 2013, 10, 167.	0.7	35
35	Simulating the SOA formation of isoprene from partitioning and aerosol phase reactions in the presence of inorganics. Atmospheric Chemistry and Physics, 2016, 16, 5993-6009.	1.9	34
36	Colorimetric Particle Acidity Analysis of Secondary Organic Aerosol Coating on Submicron Acidic Aerosols. Aerosol Science and Technology, 2008, 42, 409-420.	1.5	31

MYOSEON JANG

#	Article	IF	CITATIONS
37	Modeling atmospheric mineral aerosol chemistry to predict heterogeneous photooxidation of SO ₂ . Atmospheric Chemistry and Physics, 2017, 17, 10001-10017.	1.9	30
38	Title is missing!. Journal of Atmospheric Chemistry, 1999, 33, 241-264.	1.4	28
39	Heterogeneous photooxidation of sulfur dioxide in the presence of airborne mineral dust particles. RSC Advances, 2016, 6, 58617-58627.	1.7	28
40	Aerosol Acidity Measurement Using Colorimetry Coupled With a Reflectance UV-Visible Spectrometer. Aerosol Science and Technology, 2012, 46, 833-842.	1.5	27
41	Simulation of heterogeneous photooxidation of SO ₂ and NO _{<i>x</i>} in the presence of Gobi Desert dust particles under ambient sunlight. Atmospheric Chemistry and Physics, 2018, 18, 14609-14622.	1.9	25
42	Simulation of SOA formation from the photooxidation of monoalkylbenzenes in the presence of aqueous aerosols containing electrolytes under various NO _{<i>x</i>} levels. Atmospheric Chemistry and Physics, 2019, 19, 5719-5735.	1.9	23
43	A Predictive Model for Adsorptive Gas Partitioning of SOCs on Fine Atmospheric Inorganic Dust Particles. Environmental Science & Technology, 1999, 33, 1825-1831.	4.6	22
44	The SOA formation model combined with semiempirical quantum chemistry for predicting UV-Vis absorption of secondary organic aerosols. Physical Chemistry Chemical Physics, 2012, 14, 9058.	1.3	20
45	Gas-Particle Partitioning of Semivolatile Organic Compounds (SOCs) on Mixtures of Aerosols in a Smog Chamber. Environmental Science & Technology, 2003, 37, 4113-4121.	4.6	19
46	Formation of Active Chlorine Oxidants in Saline-Oxone Aerosol. Aerosol Science and Technology, 2010, 44, 1018-1026.	1.5	18
47	Dialkylsulfate formation in sulfuric acid-seeded secondary organic aerosol produced using an outdoor chamber under natural sunlight. Environmental Chemistry, 2016, 13, 590.	0.7	18
48	Markers of heterogeneous reaction products in α-pinene ozone secondary organic aerosol. Atmospheric Environment, 2006, 40, 5629-5639.	1.9	15
49	In situ aerosol acidity measurements using a UV–Visible micro-spectrometer and its application to the ambient air. Aerosol Science and Technology, 2020, 54, 446-461.	1.5	15
50	Simulating the Impact of Long-Range-Transported Asian Mineral Dust on the Formation of Sulfate and Nitrate during the KORUS-AQ Campaign. ACS Earth and Space Chemistry, 2020, 4, 1039-1049.	1.2	13
51	Simulation of Monoterpene SOA Formation by Multiphase Reactions Using Explicit Mechanisms. ACS Earth and Space Chemistry, 2021, 5, 1455-1467.	1.2	13
52	Prediction of delivery of organic aerosols onto air-liquid interface cells in vitro using an electrostatic precipitator. Toxicology in Vitro, 2017, 42, 319-328.	1.1	12
53	Atmospheric Processes of Aromatic Hydrocarbons in the Presence of Mineral Dust Particles in an Urban Environment. ACS Earth and Space Chemistry, 2019, 3, 2404-2414.	1.2	11
54	Simulating the impact of gas-wall partitioning on SOA formation using the explicit gas mechanism integrated with aqueous reactions containing electrolytes. Science of the Total Environment, 2020, 748, 141360.	3.9	11

MYOSEON JANG

#	Article	IF	CITATIONS
55	Atmospheric Progression of Microcystin-LR from Cyanobacterial Aerosols. Environmental Science and Technology Letters, 2020, 7, 740-745.	3.9	11
56	Acid and organic aerosol coatings on magnetic nanoparticles increase iron concentrations in human airway epithelial cells. Inhalation Toxicology, 2009, 21, 659-667.	0.8	10
57	Prediction of Phase State of Secondary Organic Aerosol Internally Mixed with Aqueous Inorganic Salts. Journal of Physical Chemistry A, 2021, 125, 10198-10206.	1.1	9
58	Gas and Particle Partitioning Behavior of Aldehyde in the Presence of Diesel Soot and Wood Smoke Aerosols. Journal of Atmospheric Chemistry, 2005, 51, 223-234.	1.4	7
59	Secondary organic aerosol formation via multiphase reaction of hydrocarbons in urban atmospheres using CAMx integrated with the UNIPAR model. Atmospheric Chemistry and Physics, 2022, 22, 9083-9098.	1.9	7
60	Synthesis and polymerization of 4′-nitro-4-biphenoxyethyne. Journal of Polymer Science Part A, 1993, 31, 3155-3157.	2.5	6
61	Deposition of Magnetic Nanoparticles Suspended in the Gas Phase on a Specific Target Area. Environmental Science & Technology, 2006, 40, 6730-6737.	4.6	6
62	Prediction of secondary organic aerosol from the multiphase reaction of gasoline vapor by using volatility–reactivity base lumping. Atmospheric Chemistry and Physics, 2022, 22, 625-639.	1.9	6
63	The effects of active chlorine on photooxidation of 2-methyl-2-butene. Science of the Total Environment, 2011, 409, 2652-2661.	3.9	4
64	Characterization of Atmospheric Processes of Brevetoxins in Sea Spray Aerosols from Red Tide Events. Environmental Science & Technology, 2022, 56, 1811-1819.	4.6	4
65	Evaluation of some SOA formation schemes for the oxidation of anthropogenic gases against experiments in two outdoor chambers. International Journal of Environment and Pollution, 2016, 59, 43.	0.2	2
66	Modeling Heterogeneous Oxidation of NO _x , SO ₂ and Hydrocarbons in the Presence of Mineral Dust Particles under Various Atmospheric Environments. ACS Symposium Series, 2018, , 301-326.	0.5	2
67	The CICAM method for <i>in situ</i> detection of aerosol acidity using colorimetry integrated with camera. Aerosol Science and Technology, 2021, 55, 795-804.	1.5	2
68	Semiempirical model for organic aerosol growth by acid-catalyzed heterogeneous reactions of organic carbonyls. Environmental Science & amp; Technology, 2005, 39, 164-74.	4.6	1
69	Response to Comment on "Semiempirical Model for Organic Aerosol Growth by Acid-Catalyzed Heterogeneous Reactions of Carbonyls― Environmental Science & Technology, 2005, 39, 8110-8111.	4.6	0