Masayoshi Tange

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9197480/publications.pdf

Version: 2024-02-01

840119 610482 32 609 11 24 citations h-index g-index papers 32 32 32 801 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Printed thin film transistors with 108 on/off ratios and photoelectrical synergistic characteristics using isoindigo-based polymers-enriched (9,8) carbon nanotubes. Nano Research, 2022, 15, 5517-5526.	5.8	7
2	Materially Engineered Artificial Pollinators. CheM, 2017, 2, 224-239.	5.8	45
3	Selective Dispersion of Largeâ€Diameter Semiconducting Carbon Nanotubes by Functionalized Conjugated Dendritic Oligothiophenes for Use in Printed Thin Film Transistors. Advanced Functional Materials, 2017, 27, 1703938.	7.8	22
4	Flexible CMOSâ€Like Circuits Based on Printed Pâ€Type and Nâ€Type Carbon Nanotube Thinâ€Film Transistors. Small, 2016, 12, 5066-5073.	5.2	51
5	Near-Infrared Photoluminescence Properties of Endohedral Mono- and Dithulium Metallofullerenes. ACS Nano, 2016, 10, 4282-4287.	7.3	20
6	Printed thin-film transistors and NO2 gas sensors based on sorted semiconducting carbon nanotubes by isoindigo-based copolymer. Carbon, 2016, 108, 372-380.	5.4	70
7	Printed thin film transistors and CMOS inverters based on semiconducting carbon nanotube ink purified by a nonlinear conjugated copolymer. Nanoscale, 2016, 8, 4588-4598.	2.8	44
8	Room-temperature Y-type emission of perylenes by encapsulation within single-walled carbon nanotubes. Nanoscale, 2016, 8, 7834-7839.	2.8	11
9	Sorting semiconducting single walled carbon nanotubes by poly(9,9-dioctylfluorene) derivatives and application for ammonia gas sensing. Carbon, 2015, 94, 903-910.	5.4	36
10	Spectroscopic Characterization of Nanohybrids Consisting of Single-walled Carbon Nanotubes and Fullerodendron. Fullerenes Nanotubes and Carbon Nanostructures, 2014, 22, 75-87.	1.0	11
11	Extraction of semiconducting single-walled carbon nanotubes encapsulating fullerenes by poly(9,9-dioctylfluorene-alt-benzothiadiazole). Japanese Journal of Applied Physics, 2014, 53, 045101.	0.8	1
12	Influence of structure-selective fluorene-based polymer wrapping on optical transitions of single-wall carbon nanotubes. Nanoscale, 2014, 6, 248-254.	2.8	13
13	Diameter selective electron transfer from encapsulated ferrocenes to single-walled carbon nanotubes. Nanoscale, 2014, 6, 13910-13914.	2.8	9
14	Light emission at telecom wavelengths from single-walled carbon nanotubes. , 2013, , .		1
15	Depolarized dynamic light scattering study of multi-walled carbon nanotubes in solution. Materials Express, 2013, 3, 37-42.	0.2	9
16	Selective Extraction of Semiconducting Single-Wall Carbon Nanotubes by Poly(9,9-dioctylfluorene- <i>alt</i> -pyridine) for 1.5 î½m Emission. ACS Applied Materials & Diterfaces, 2012, 4, 6458-6462.	4.0	42
17	Selective Extraction of Large-Diameter Single-Wall Carbon Nanotubes with Specific Chiral Indices by Poly(9,9-diocty fluorene- <i>alt</i> -benzothiadiazole). Journal of the American Chemical Society, 2011, 133, 11908-11911.	6.6	102
18	Fundamental Importance of Background Analysis in Precise Characterization of Single-Walled Carbon Nanotubes by Optical Absorption Spectroscopy. Journal of Physical Chemistry C, 2010, 114, 10077-10081.	1.5	23

#	Article	IF	CITATIONS
19	Effect of Strip Width on Low-Field Peak Effect of Critical Current Density in Bi2Sr2CaCu2O8+δ Superconducting Strips. Journal of the Physical Society of Japan, 2009, 78, 024703.	0.7	5
20	Electrical transport properties influenced by surface barriers in a high-Tc superconducting strip. Physica C: Superconductivity and Its Applications, 2008, 468, 1274-1277.	0.6	0
21	Ca Substitution Effect for Sr upon Superconductivity of Bi2.1CaySr1.9-yCuO6+δ. Japanese Journal of Applied Physics, 2007, 46, L167-L169.	0.8	12
22	Size effect of critical current densities for Bi-2212 superconducting whiskers. Physica C: Superconductivity and Its Applications, 2007, 460-462, 388-389.	0.6	2
23	80K superconductivity in Bi-2201 phase. Physica C: Superconductivity and Its Applications, 2007, 463-465, 93-95.	0.6	12
24	A new aspect of superconductivity observed (Bi,Pb)2(Sr,La)2CuO6+ \hat{l} single crystals. Physica C: Superconductivity and Its Applications, 2006, 445-448, 440-442.	0.6	8
25	Peak effect of critical current densities ofBi2Sr2CaCu2O8+Î′superconducting whiskers at high temperatures in a low-field regime. Physical Review B, 2006, 74, .	1.1	8
26	Area-controlled growth of Bi-2212 whiskers from Bi2+xSr2â^'xCaCu2Oy pellets. Physica C: Superconductivity and Its Applications, 2005, 426-431, 563-567.	0.6	4
27	Optimization of the Bi-2201 superconductors with Pb and La co-doping. Physica C: Superconductivity and Its Applications, 2005, 426-431, 351-354.	0.6	9
28	Area control of Bi-2212 whiskers' formation. Physica C: Superconductivity and Its Applications, 2004, 412-414, 610-613.	0.6	8
29	Co-doping effects of Pb and La in (Bi,Pb)2(Sr,La)2CuOy. Physica C: Superconductivity and Its Applications, 2004, 412-414, 230-234.	0.6	9
30	Magnetic properties of Bi-2201 phase single crystals. Physica C: Superconductivity and Its Applications, 2004, 408-410, 649-650.	0.6	2
31	Synthesis and properties of high quality Bi-2212 whiskers. Physica C: Superconductivity and Its Applications, 2004, 408-410, 872-873.	0.6	6
32	Annealing Effect of 80 K-Class Superconductivity of Ca-Doped B2S2CuO6+Î'în Bi-2201 Phase. Applied Physics Express, 0, 1, 041701.	1.1	7