
Claude Rouillard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9197407/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cognitive Functions in Substance-Related and Addictive Disorders. , 2021, , 519-531.		1
2	Concurrent transcranial direct current stimulation and resting state functional magnetic resonance imaging in patients with Gambling Disorder. Brain Connectivity, 2021, 11, 815-821.	0.8	3
3	Brain morphometry in adults with gambling disorder. Journal of Psychiatric Research, 2021, 141, 66-73.	1.5	0
4	The impact of brain morphometry on tDCS effects on GABA levels. Brain Stimulation, 2020, 13, 284-286.	0.7	4
5	The highly selective mGlu ₂ receptor positive allosteric modulator LYâ€487,379 alleviates <scp>l</scp> â€DOPAâ€induced dyskinesia in the 6â€OHDAâ€lesioned rat model of Parkinson's disease. Europear Journal of Neuroscience, 2020, 51, 2412-2422.	11.2	11
6	The orphan nuclear receptor Nor1/Nr4a3 is a negative regulator of β-cell mass. Journal of Biological Chemistry, 2019, 294, 4889-4897.	1.6	22
7	Membrane cholesterol removal and replenishment affect rat and monkey brain monoamine transporters. Neuropharmacology, 2018, 133, 289-306.	2.0	8
8	The Stress-Induced Transcription Factor NR4A1 Adjusts Mitochondrial Function and Synapse Number in Prefrontal Cortex. Journal of Neuroscience, 2018, 38, 1335-1350.	1.7	57
9	Genetic disruption of the nuclear receptor Nur77 (Nr4a1) in rat reduces dopamine cell loss and l-Dopa-induced dyskinesia in experimental Parkinson's disease. Experimental Neurology, 2018, 304, 143-153.	2.0	27
10	17β-Estradiol Delays 6-OHDA-Induced Apoptosis by Acting on Nur77 Translocation from the Nucleus to the Cytoplasm. Neurotoxicity Research, 2014, 25, 124-134.	1.3	10
11	NR4A orphan nuclear receptors in glucose homeostasis: A minireview. Diabetes and Metabolism, 2013, 39, 478-484.	1.4	38
12	Estrogen receptors and lesion-induced response of striatal dopamine receptors. Neuroscience, 2013, 236, 99-109.	1.1	6
13	Modulation of haloperidol-induced patterns of the transcription factor Nur77 and Nor-1 expression by serotonergic and adrenergic drugs in the mouse brain. International Journal of Neuropsychopharmacology, 2012, 15, 509-521.	1.0	10
14	Effect of chronic l-DOPA treatment on 5-HT1A receptors in parkinsonian monkey brain. Neurochemistry International, 2012, 61, 1160-1171.	1.9	17
15	Dopamine D2 Antagonist-Induced Striatal Nur77 Expression Requires Activation of mGlu5 Receptors by Cortical Afferents. Frontiers in Pharmacology, 2012, 3, 153.	1.6	7
16	Cystamine metabolism and brain transport properties: clinical implications for neurodegenerative diseases. Journal of Neurochemistry, 2010, 114, 1651-1658.	2.1	42
17	Cystamine prevents MPTP-induced toxicity in young adult mice via the up-regulation of the brain-derived neurotrophic factor. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2010, 34, 193-203.	2.5	31
18	Effect of non-dopaminergic drug treatment on Levodopa induced dyskinesias in MPTP monkeys: Common implication of striatal neuropeptides. Neuropharmacology, 2010, 58, 286-296.	2.0	40

CLAUDE ROUILLARD

#	Article	IF	CITATIONS
19	Nurr1 Is Required for Maintenance of Maturing and Adult Midbrain Dopamine Neurons. Journal of Neuroscience, 2009, 29, 15923-15932.	1.7	320
20	Nur77 mRNA levels and L-Dopa-induced dyskinesias in MPTP monkeys treated with docosahexaenoic acid. Neurobiology of Disease, 2009, 36, 213-222.	2.1	32
21	The transcription factors Nur77 and retinoid X receptors participate in amphetamine-induced locomotor activities. Psychopharmacology, 2009, 202, 635-648.	1.5	16
22	Differences between subacute and chronic MPTP mice models: investigation of dopaminergic neuronal degeneration and αâ€synuclein inclusions. Journal of Neurochemistry, 2009, 109, 1469-1482.	2.1	118
23	P2.130 Neuroprotective mechanisms of cystamine in a murine model of Parkinson's disease. Parkinsonism and Related Disorders, 2009, 15, S124-S125.	1.1	0
24	Role of Members of the Nur (NR4A) Transcription Factors in Dopamine-Related Neurodegenerative and Neuropsychiatric Disorders. , 2009, , 195-210.		0
25	Extracellular signalâ€regulated kinases (ERK) and protein kinase C (PKC) activities are involved in the modulation of <i>Nur77</i> and <i>Nor</i> â€l expression by dopaminergic drugs. Journal of Neurochemistry, 2008, 106, 875-888.	2.1	17
26	Role of spinal 5â€HT ₂ receptor subtypes in quipazineâ€induced hindlimb movements after a lowâ€thoracic spinal cord transection. European Journal of Neuroscience, 2008, 28, 2231-2242.	1.2	70
27	Nur77 and retinoid X receptors: crucial factors in dopamine-related neuroadaptation. Trends in Neurosciences, 2007, 30, 22-30.	4.2	85
28	Functional neurochemistry of the basal ganglia. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 83, 19-66.	1.0	12
29	Nur77 Gene Knockout Alters Dopamine Neuron Biochemical Activity and Dopamine Turnover. Biological Psychiatry, 2006, 60, 538-547.	0.7	40
30	Neuroprotective effects of cystamine in aged parkinsonian mice. Neurobiology of Aging, 2006, 27, 862-870.	1.5	53
31	Opioids and motor complications in Parkinson's disease. Trends in Pharmacological Sciences, 2006, 27, 512-517.	4.0	62
32	Profile of immediate early gene expression in the lumbar spinal cord of low-thoracic paraplegic mice Behavioral Neuroscience, 2006, 120, 1384-1388.	0.6	18
33	Contribution of spinal 5-HT1Aand 5-HT7receptors to locomotor-like movement induced by 8-OH-DPAT in spinal cord-transected mice. European Journal of Neuroscience, 2006, 24, 535-546.	1.2	106
34	Impaired behavioural and molecular adaptations to dopamine denervation and repeated Lâ€ĐOPA treatment in Nur77â€knockout mice. European Journal of Neuroscience, 2006, 24, 795-805.	1.2	21
35	Docosahexaenoic acid reduces levodopaâ€induced dyskinesias in 1â€methylâ€4â€phenylâ€1,2,3,6â€tetrahydropyridine monkeys. Annals of Neurology, 2006, 59, 282-288.	2.8	96
36	Denervation and repeated l-DOPA induce complex regulatory changes in neurochemical phenotypes of striatal neurons: Implication of a dopamine D1-dependent mechanism. Neurobiology of Disease, 2005, 20, 450-460.	2.1	45

#	Article	IF	CITATIONS
37	Induction Patterns of Transcription Factors of the Nur Family (Nurr1, Nur77, and Nor-1) by Typical and Atypical Antipsychotics in the Mouse Brain: Implication for Their Mechanism of Action. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 460-473.	1.3	53
38	Dyskinesias occur in response to saline and naltrexone alone after priming with combination of dopaminergic agents and naltrexone in the MPTP parkinsonian monkeys. Neurobiology of Disease, 2005, 19, 266-272.	2.1	10
39	Naltrexone in the short-term decreases antiparkinsonian response to -Dopa and in the long-term increases dyskinesias in drug-naÃ ⁻ ve parkinsonian monkeys. Neuropharmacology, 2005, 49, 165-173.	2.0	16
40	The Transcription Factor NGFI-B (Nur77) and Retinoids Play a Critical Role in Acute Neuroleptic-Induced Extrapyramidal Effect and Striatal Neuropeptide Gene Expression. Neuropsychopharmacology, 2004, 29, 335-346.	2.8	45
41	Rotenone induces nonâ€specific central nervous system and systemic toxicity. FASEB Journal, 2004, 18, 717-719.	0.2	167
42	Clozapine and dopamine D3receptor antisense reduce cocaine- and amphetamine-regulated transcript expression in the rat nucleus accumbens shell. Synapse, 2004, 51, 233-240.	0.6	42
43	Docosahexaenoic acid reduces haloperidol-induced dyskinesias in mice: Involvement of Nur77 and retinoid receptors. Biological Psychiatry, 2004, 56, 522-526.	0.7	49
44	Denervation and repeated ?-DOPA induce a coordinate expression of the transcription factor NGFI-B in striatal projection pathways in hemi-parkinsonian rats. Neurobiology of Disease, 2003, 14, 98-109.	2.1	37
45	Effects of Cocaine on c-Fos and NGFI-B mRNA Expression in Transgenic Mice Underexpressing Glucocorticoid Receptors. Neuropsychopharmacology, 2003, 28, 478-489.	2.8	24
46	Contrasting Patterns and Cellular Specificity of Transcriptional Regulation of the Nuclear Receptor Nerve Growth Factor-Inducible B by Haloperidol and Clozapine in the Rat Forebrain. Journal of Neurochemistry, 2002, 75, 1694-1702.	2.1	75
47	Impact of antipsychotic drug administration on the expression of nuclear receptors in the neocortex and striatum of the rat brain. Neuroscience, 2001, 106, 117-128.	1.1	57
48	Dorsal raphe stimulation differentially modulates dopaminergic neurons in the ventral tegmental area and substantia nigra. Synapse, 2000, 35, 281-291.	0.6	87
49	Dopamine D3 receptor antisense administration reduces basalc-fos and NGFI-B mRNA levels in the rat forebrain. , 1999, 32, 51-57.		31
50	Dopamine and serotonin interactions in the modulation of the expression of the immediate-early transcription factor, nerve growth factor-inducible B, in the striatum. Neuroscience, 1999, 91, 1045-1054.	1.1	29
51	Modification of haloperidol-induced pattern of c-fosexpression by serotonin agonists. European Journal of Neuroscience, 1998, 10, 3546-3555.	1.2	26
52	The antisense strategy applied to the study of dopamine D3 receptor functions in rat forebrain. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1998, 22, 857-882.	2.5	8
53	Dopamine D3 receptor antisense reduces neuropeptide mRNA levels in rat nucleus accumbens. NeuroReport, 1997, 8, 3901-3905.	0.6	20
54	Fenfluramine-induced activation of the immediate-early gene c-fos in the striatum: possible interaction between serotonin and dopamine. Molecular Brain Research, 1996, 37, 105-115.	2.5	40

CLAUDE ROUILLARD

#	Article	IF	CITATIONS
55	Research in addiction (psychiatry in progress, vol. 2). Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1996, 20, 747.	2.5	0
56	Role of CRH in the effects of 5-HT-receptor agonists on food intake and metabolic rate. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1996, 271, R1231-R1238.	0.9	13
57	Effects of electrical stimulation of the central nucleus of the amygdala on the in vivo electrophysiological activity of rat nigral dopaminergic neurons. Synapse, 1995, 21, 348-356.	0.6	16
58	The effects of the phencyclidine analogs BTCP and TCP on nigrostriatal dopamine neuronal activity. European Journal of Pharmacology, 1990, 182, 227-235.	1.7	15
59	Effects of chronic treatment of MPTP monkeys with bromocriptine alone or in combination with SKF 38393. European Journal of Pharmacology, 1990, 185, 209-215.	1.7	21
60	Endocrine and neurochemical actions of cocaine. Canadian Journal of Physiology and Pharmacology, 1989, 67, 1177-1181.	0.7	28
61	Repeated stimulation of D-1 dopamine receptors increases the circling response to bromocriptine in rats with a 6-OHDA lesion. European Journal of Pharmacology, 1988, 157, 125-133.	1.7	26
62	Specific D1 and D2 dopamine agonists have synergistic effects in the 6-hydroxydopamine circling model in the rat. Neuropharmacology, 1988, 27, 1257-1264.	2.0	47
63	Behavioral and biochemical evidence for a different effect of repeated administration of I-DOPA and bromocriptine on denervated versus non-denervated striatal dopamine receptors. Neuropharmacology, 1987, 26, 1601-1606.	2.0	57
64	17β-estradiol at a physiological dose acutely increases dopamine turnover in rat brain. European Journal of Pharmacology, 1985, 117, 197-203.	1.7	184
65	Modifications occurring in motor programs during learning of a complex task in man. Brain Research, 1982, 241, 87-93.	1.1	18