Xingcan Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9197100/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thin, soft, 3D printing enabled crosstalk minimized triboelectric nanogenerator arrays for tactile sensing. Fundamental Research, 2023, 3, 111-117.	1.6	6
2	Epidermal self-powered sweat sensors for glucose and lactate monitoring. Bio-Design and Manufacturing, 2022, 5, 201-209.	3.9	53
3	Human joint enabled flexible self-sustainable sweat sensors. Nano Energy, 2022, 92, 106786.	8.2	45
4	Bandage based energy generators activated by sweat in wireless skin electronics for continuous physiological monitoring. Nano Energy, 2022, 92, 106755.	8.2	19
5	Electronic skin as wireless human-machine interfaces for robotic VR. Science Advances, 2022, 8, eabl6700.	4.7	88
6	Stretchable Sweatâ€Activated Battery in Skinâ€Integrated Electronics for Continuous Wireless Sweat Monitoring. Advanced Science, 2022, 9, e2104635.	5.6	29
7	Garment embedded sweat-activated batteries in wearable electronics for continuous sweat monitoring. Npj Flexible Electronics, 2022, 6, .	5.1	24
8	Bio-inspired ultra-thin microfluidics for soft sweat-activated batteries and skin electronics. Journal of Materials Chemistry A, 2022, 10, 19662-19670.	5.2	5
9	Transient, Implantable, Ultrathin Biofuel Cells Enabled by Laser-Induced Graphene and Gold Nanoparticles Composite. Nano Letters, 2022, 22, 3447-3456.	4.5	19
10	Soft, stretchable, wireless intelligent threeâ€lead electrocardiograph monitors with feedback functions for warning of potential heart attack. SmartMat, 2022, 3, 668-684.	6.4	5
11	Skin-integrated, stretchable, transparent triboelectric nanogenerators based on ion-conducting hydrogel for energy harvesting and tactile sensing. Nano Energy, 2022, 99, 107442.	8.2	39
12	Implantable Electronic Medicine Enabled by Bioresorbable Microneedles for Wireless Electrotherapy and Drug Delivery. Nano Letters, 2022, 22, 5944-5953.	4.5	36
13	Exploring the shape and distribution of electrodes in membraneless enzymatic biofuel cells for high power output. International Journal of Hydrogen Energy, 2021, 46, 17414-17420.	3.8	7
14	Thin, soft, <scp>garmentâ€integrated</scp> triboelectric nanogenerators for energy harvesting and human machine interfaces. EcoMat, 2021, 3, e12123.	6.8	15
15	Thin, soft, skin-integrated foam-based triboelectric nanogenerators for tactile sensing and energy harvesting. Materials Today Energy, 2021, 20, 100657.	2.5	47
16	Self-powered skin electronics for energy harvesting and healthcare monitoring. Materials Today Energy, 2021, 21, 100786.	2.5	36
17	High Channel Temperature Mapping Electronics in a Thin, Soft, Wireless Format for Non-Invasive Body Thermal Analysis. Biosensors, 2021, 11, 435.	2.3	2
18	A sensitive H2O2 biosensor based on carbon nanotubes/tetrathiafulvalene and its application in detecting NADH. Analytical Biochemistry, 2020, 589, 113493.	1.1	26

XINGCAN HUANG

#	Article	IF	CITATIONS
19	Layer-by-layer assembly for immobilizing enzymes in enzymatic biofuel cells. Sustainable Energy and Fuels, 2020, 4, 68-79.	2.5	36
20	Wearable biofuel cells based on the classification of enzyme for high power outputs and lifetimes. Biosensors and Bioelectronics, 2019, 124-125, 40-52.	5.3	98
21	Peroxidase-catalyzed chemiluminescence system and its application in immunoassay. Talanta, 2018, 180, 260-270.	2.9	94
22	An attenuated time measurement based on pulse interval for oscillating cup viscometer. , 2017, , .		2