
Patricia M Kane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9197044/publications.pdf Version: 2024-02-01

DATRICIA M KANE

#	Article	IF	CITATIONS
1	Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nature Biotechnology, 2004, 22, 62-69.	17.5	584
2	Disassembly and Reassembly of the Yeast Vacuolar H+-ATPase in Vivo. Journal of Biological Chemistry, 1995, 270, 17025-17032.	3.4	407
3	The Where, When, and How of Organelle Acidification by the Yeast Vacuolar H + -ATPase. Microbiology and Molecular Biology Reviews, 2006, 70, 177-191.	6.6	362
4	The yeast lysosome-like vacuole: Endpoint and crossroads. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 650-663.	4.1	337
5	Vacuolar and Plasma Membrane Proton Pumps Collaborate to Achieve Cytosolic pH Homeostasis in Yeast. Journal of Biological Chemistry, 2008, 283, 20309-20319.	3.4	233
6	Reversible Association between the V ₁ and V ₀ Domains of Yeast Vacuolar H ⁺ -ATPase Is an Unconventional Glucose-Induced Effect. Molecular and Cellular Biology, 1998, 18, 7064-7074.	2.3	204
7	The RAVE Complex Is Essential for Stable Assembly of the Yeast V-ATPase. Journal of Biological Chemistry, 2002, 277, 13831-13839.	3.4	160
8	The H Subunit (Vma13p) of the Yeast V-ATPase Inhibits the ATPase Activity of Cytosolic V1 Complexes. Journal of Biological Chemistry, 2000, 275, 21761-21767.	3.4	147
9	The signaling lipid PI(3,5)P ₂ stabilizes V ₁ –V _o sector interactions and activates the V-ATPase. Molecular Biology of the Cell, 2014, 25, 1251-1262.	2.1	117
10	Structure of the Yeast Vacuolar ATPase. Journal of Biological Chemistry, 2008, 283, 35983-35995.	3.4	110
11	Loss of Vacuolar Proton-translocating ATPase Activity in Yeast Results in Chronic Oxidative Stress*. Journal of Biological Chemistry, 2007, 282, 7125-7136.	3.4	94
12	The long physiological reach of the yeast vacuolar H+-ATPase. Journal of Bioenergetics and Biomembranes, 2007, 39, 415-421.	2.3	93
13	Assembly and regulation of the yeast vacuolar H+-ATPase. Journal of Bioenergetics and Biomembranes, 2003, 35, 313-321.	2.3	91
14	A Genomic Screen for Yeast Vacuolar Membrane ATPase Mutants. Genetics, 2005, 170, 1539-1551.	2.9	86
15	Proton Transport and pH Control in Fungi. Advances in Experimental Medicine and Biology, 2016, 892, 33-68.	1.6	85
16	Targeting Reversible Disassembly as a Mechanism of Controlling V-ATPase Activity. Current Protein and Peptide Science, 2012, 13, 117-123.	1.4	84
17	Site-directed Mutagenesis of the Yeast V-ATPase A Subunit. Journal of Biological Chemistry, 1997, 272, 11750-11756.	3.4	81
18	Protein targeting to the yeast vacuole. Trends in Biochemical Sciences, 1989, 14, 347-350.	7.5	80

PATRICIA M KANE

#	Article	IF	CITATIONS
19	Cytosolic Ca2+ Homeostasis Is a Constitutive Function of the V-ATPase in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2000, 275, 38245-38253.	3.4	74
20	Regulation of Vacuolar Proton-translocating ATPase Activity and Assembly by Extracellular pH. Journal of Biological Chemistry, 2010, 285, 23771-23778.	3.4	74
21	Regulation of V-ATPases by reversible disassembly. FEBS Letters, 2000, 469, 137-141.	2.8	73
22	RAVE Is Essential for the Efficient Assembly of the C Subunit with the Vacuolar H+-ATPase. Journal of Biological Chemistry, 2007, 282, 26185-26194.	3.4	73
23	Subunit composition, biosynthesis, and assembly of the yeast vacuolar proton-translocating ATPase. Journal of Bioenergetics and Biomembranes, 1992, 24, 383-393.	2.3	72
24	Site-directed Mutagenesis of the Yeast V-ATPase B Subunit (Vma2p). Journal of Biological Chemistry, 1996, 271, 2018-2022.	3.4	71
25	The Yeast Vacuolar Proton-translocating ATPase Contains a Subunit Homologous to the Manduca sexta and Bovine e Subunits That Is Essential for Function. Journal of Biological Chemistry, 2004, 279, 17361-17365.	3.4	66
26	The E and G Subunits of the Yeast V-ATPase Interact Tightly and Are Both Present at More Than One Copy per V1 Complex. Journal of Biological Chemistry, 2006, 281, 22752-22760.	3.4	65
27	Cardiolipin Mediates Cross-Talk between Mitochondria and the Vacuole. Molecular Biology of the Cell, 2008, 19, 5047-5058.	2.1	65
28	Cross-Linking of IgE-Receptor complexes at the cell surface: A fluorescence method for studying the binding of monovalent and bivalent haptens to IgE. Molecular Immunology, 1986, 23, 769-781.	2.2	60
29	Yeast V1-ATPase. Journal of Biological Chemistry, 2003, 278, 47299-47306.	3.4	59
30	Consequences of Loss of Vph1 Protein-containing Vacuolar ATPases (V-ATPases) for Overall Cellular pH Homeostasis. Journal of Biological Chemistry, 2011, 286, 28089-28096.	3.4	57
31	Mutational Analysis of the Subunit C (Vma5p) of the Yeast Vacuolar H+-ATPase. Journal of Biological Chemistry, 2002, 277, 8979-8988.	3.4	56
32	Mutations in the CYS4 Gene Provide Evidence for Regulation of the Yeast Vacuolar H+-ATPase by Oxidation and Reduction in Vivo. Journal of Biological Chemistry, 1997, 272, 28149-28157.	3.4	55
33	Structural and Functional Separation of the N- and C-terminal Domains of the Yeast V-ATPase Subunit H. Journal of Biological Chemistry, 2005, 280, 36978-36985.	3.4	54
34	Regulation of V-ATPase Activity and Organelle pH by Phosphatidylinositol Phosphate Lipids. Frontiers in Cell and Developmental Biology, 2020, 8, 510.	3.7	54
35	Mutational Analysis of Subunit G (Vma10p) of the Yeast Vacuolar H+-ATPase. Journal of Biological Chemistry, 2000, 275, 37232-37239.	3.4	51
36	Cross-Linking of IgE-receptor complexes at the cell surface: Synthesis and characterization of a long bivalent hapten that is capable of triggering mast cells and rat basophilic leukemia cells. Molecular Immunology, 1986, 23, 783-790.	2.2	49

PATRICIA M KANE

#	Article	IF	CITATIONS
37	Subunit Interactions and Requirements for Inhibition of the Yeast V1-ATPase. Journal of Biological Chemistry, 2009, 284, 13316-13325.	3.4	49
38	Novel Vacuolar H+-ATPase Complexes Resulting from Overproduction of Vma5p and Vma13p. Journal of Biological Chemistry, 2002, 277, 2716-2724.	3.4	48
39	The RAVE complex is an isoform-specific V-ATPase assembly factor in yeast. Molecular Biology of the Cell, 2014, 25, 356-367.	2.1	48
40	Vacuolar H ⁺ -ATPase Works in Parallel with the HOG Pathway To Adapt Saccharomyces cerevisiae Cells to Osmotic Stress. Eukaryotic Cell, 2012, 11, 282-291.	3.4	44
41	Direct interaction of the Golgi V-ATPase a-subunit isoform with PI(4)P drives localization of Golgi V-ATPases in yeast. Molecular Biology of the Cell, 2017, 28, 2518-2530.	2.1	44
42	Crystal structure of yeast V ₁ â€ <scp>ATP</scp> ase in the autoinhibited state. EMBO Journal, 2016, 35, 1694-1706.	7.8	43
43	Wild-type and Mutant Vacuolar Membranes Support pH-dependent Reassembly of the Yeast Vacuolar H+-ATPase in Vitro. Journal of Biological Chemistry, 1996, 271, 19592-19598.	3.4	42
44	Whole exome sequencing identified ATP6V1C2 as a novel candidate gene for recessive distal renal tubular acidosis. Kidney International, 2020, 97, 567-579.	5.2	42
45	Early Steps in Assembly of the Yeast Vacuolar H+-ATPase. Journal of Biological Chemistry, 1999, 274, 17275-17283.	3.4	41
46	Loss of Vacuolar H+-ATPase (V-ATPase) Activity in Yeast Generates an Iron Deprivation Signal That Is Moderated by Induction of the Peroxiredoxin TSA2. Journal of Biological Chemistry, 2013, 288, 11366-11377.	3.4	41
47	Loss of Vacuolar H+-ATPase Activity in Organelles Signals Ubiquitination and Endocytosis of the Yeast Plasma Membrane Proton pump Pma1p. Journal of Biological Chemistry, 2014, 289, 32316-32326.	3.4	39
48	Characterization of a Temperature-sensitive Yeast Vacuolar ATPase Mutant with Defects in Actin Distribution and Bud Morphology. Journal of Biological Chemistry, 1998, 273, 18470-18480.	3.4	38
49	Measurement of Vacuolar and Cytosolic pH In Vivo in Yeast Cell Suspensions. Journal of Visualized Experiments, 2013, , .	0.3	36
50	Interaction of the late endo-lysosomal lipid PI(3,5)P2 with the Vph1 isoform of yeast V-ATPase increases its activity and cellular stress tolerance. Journal of Biological Chemistry, 2019, 294, 9161-9171.	3.4	36
51	Mutations in the Yeast <i>KEX2</i> Gene Cause a Vma ^{â^'} -Like Phenotype: a Possible Role for the Kex2 Endoprotease in Vacuolar Acidification. Molecular and Cellular Biology, 1998, 18, 1534-1543.	2.3	34
52	Molecular Interactions and Cellular Itinerary of the Yeast RAVE (Regulator of the H+-ATPase of) Tj ETQq0 0 0 rgI	3T /Qverloc	:k 10 Tf 50 14
53	Interaction of IgE with Its High-Affinity Receptor. International Archives of Allergy and Immunology, 1989, 88, 23-28.	2.1	26

Biosynthesis and regulation of the yeast vacuolar H+-ATPase. , 1999, 31, 49-56.

25

PATRICIA M KANE

#	Article	IF	CITATIONS
55	RAVE and Rabconnectin-3 Complexes as Signal Dependent Regulators of Organelle Acidification. Frontiers in Cell and Developmental Biology, 2021, 9, 698190.	3.7	21
56	Diploids Heterozygous for a vma13Δ Mutation in Saccharomyces cerevisiae Highlight the Importance of V-ATPase Subunit Balance in Supporting Vacuolar Acidification and Silencing Cytosolic V1-ATPase Activity. Journal of Biological Chemistry, 2007, 282, 8521-8532.	3.4	17
57	Perturbation of the Vacuolar ATPase. Journal of Biological Chemistry, 2015, 290, 27460-27472.	3.4	17
58	Compensatory Internalization of Pma1 in V-ATPase Mutants in <i>Saccharomyces cerevisiae</i> Requires Calcium- and Glucose-Sensitive Phosphatases. Genetics, 2018, 208, 655-672.	2.9	15
59	Interaction between the yeast RAVE complex and Vph1-containing Vo sectors is a central glucose-sensitive interaction required for V-ATPase reassembly. Journal of Biological Chemistry, 2020, 295, 2259-2269.	3.4	15
60	Defining steps in RAVE-catalyzed V-ATPase assembly using purified RAVE and V-ATPase subcomplexes. Journal of Biological Chemistry, 2021, 296, 100703.	3.4	14
61	Close-Up and Genomic Views of the Yeast Vacuolar H+-ATPase. Journal of Bioenergetics and Biomembranes, 2005, 37, 399-403.	2.3	13
62	Regulation of Vacuolar H ⁺ -ATPase Activity by the Cdc42 Effector Ste20 in Saccharomyces cerevisiae. Eukaryotic Cell, 2012, 11, 442-451.	3.4	11
63	Adaptive laboratory evolution in S. cerevisiae highlights role of transcription factors in fungal xenobiotic resistance. Communications Biology, 2022, 5, 128.	4.4	8
64	Valproate activates the Snf1 kinase in Saccharomyces cerevisiae by decreasing the cytosolic pH. Journal of Biological Chemistry, 2021, 297, 101110.	3.4	7
65	Some assembly required: Contributions of Tom Stevens' lab to the Vâ€ATPase field. Traffic, 2018, 19, 385-390.	2.7	5
66	The presence of the alternatively spliced A2 cassette in the vacuolar H+-ATPase subunit A prevents assembly of the V1 catalytic domain. FEBS Journal, 1999, 266, 293-301.	0.2	4
67	Energy powerhouses of cells come into focus. Science, 2018, 360, 600-601.	12.6	3
68	A dual action small molecule enhances azoles and overcomes resistance through co-targeting Pdr5 and Vma1. Translational Research, 2022, , .	5.0	2
69	The Human Rogdi Protein Is the Functional Homologue of Yeast Rav2 and Can Promote Vâ€ATPase Assembly. FASEB Journal, 2021, 35, .	0.5	0
70	Dissecting Regulatory Interactions with Cytosolic Nâ€ŧerminal Domain of Vâ€ATPase aâ€subunit Isoforms. FASEB Journal, 2021, 35, .	0.5	0
71	Vacuolar H+-ATPase Assembly. , 2014, , 1-30.		0
72	Inositol Depletion Perturbs the Vacuolarâ€ATPase: A Novel Mechanism of Action of Valproate. FASEB Journal, 2015, 29, 715.50.	0.5	0

#	Article	IF	CITATIONS
73	Some reassembly required: Requirements for RAVEâ€mediated reassembly of the yeast Vâ€ATPase. FASEB Journal, 2019, 33, 788.3.	0.5	0
74	Deciphering the isoform code contained in V o aâ€subunit isoforms of the Vâ€ATPase. FASEB Journal, 2020, 34, 1-1.	0.5	0
75	Editorial: Intracellular Molecular Processes Affected by pH. Frontiers in Molecular Biosciences, 2022, 9, 891533.	3.5	0
76	Chimeric Vâ€ATPases with Different Regulatory Properties. FASEB Journal, 2022, 36, .	0.5	0
77	Interactions between the aNT Domains of Human Vâ€ATPases and Phosphatidylinositol Phosphate Lipids. FASEB Journal, 2022, 36, .	0.5	0