
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9196835/publications.pdf Version: 2024-02-01

FANHANC ZENC

#	Article	IF	CITATIONS
1	Climate change, water resources and sustainable development in the arid and semi-arid lands of Central Asia in the past 30 years. Journal of Arid Land, 2019, 11, 1-14.	0.9	76
2	An observational study of soil moisture effects on wind erosion at a gobi site in the Taklimakan Desert. Journal of Geophysical Research, 2005, 110, .	3.3	71
3	Life span and structure of ephemeral root modules of different functional groups from a desert system. New Phytologist, 2016, 211, 103-112.	3.5	64
4	Water use by perennial plants in the transition zone between river oasis and desert in NW China. Basic and Applied Ecology, 2006, 7, 253-267.	1.2	63
5	Measurement of saltation process over gobi and sand dunes in the Taklimakan desert, China, with newly developed sand particle counter. Journal of Geophysical Research, 2005, 110, .	3.3	55
6	Relationship between soil profile accumulation and surface emission of N2O: effects of soil moisture and fertilizer nitrogen. Biology and Fertility of Soils, 2019, 55, 97-107.	2.3	50
7	A global metaâ€analysis of nitrous oxide emission from dripâ€irrigated cropping system. Global Change Biology, 2021, 27, 3244-3256.	4.2	47
8	Size-Dependent Geochemical Characteristics of Asian Dust-Sr and Nd Isotope Compositions as Tracers for Source Identification Journal of the Meteorological Society of Japan, 2005, 83A, 107-120.	0.7	43
9	Nitrogen application mitigates drought-induced metabolic changes in Alhagi sparsifolia seedlings by regulating nutrient and biomass allocation patterns. Plant Physiology and Biochemistry, 2020, 155, 828-841.	2.8	36
10	Responses of root growth of Alhagi sparsifolia Shap. (Fabaceae) to different simulated groundwater depths in the southern fringe of the Taklimakan Desert, China. Journal of Arid Land, 2013, 5, 220-232.	0.9	33
11	Leaf and whole tree adaptations to mild salinity in field grown Populus euphratica. Tree Physiology, 2009, 29, 1237-1246.	1.4	28
12	MicroRNA Mediated Plant Responses to Nutrient Stress. International Journal of Molecular Sciences, 2022, 23, 2562.	1.8	27
13	A Model-Based Real-Time Decision Support System for Irrigation Scheduling to Improve Water Productivity. Agronomy, 2019, 9, 686.	1.3	26
14	Enhanced efficiency nitrogen fertilizers were not effective in reducing N2O emissions from a drip-irrigated cotton field in arid region of Northwestern China. Science of the Total Environment, 2020, 748, 141543.	3.9	23
15	Observation of Number Concentration of Desert Aerosols in the South of the Taklimakan Desert, China. Journal of the Meteorological Society of Japan, 2005, 83A, 31-43.	0.7	22
16	Presence of spring-thaw N2O emissions are not linked to functional gene abundance in a drip-fertigated cropped soil in arid northwestern China. Science of the Total Environment, 2019, 695, 133670.	3.9	22
17	Water relation characteristics ofAlhagi sparsifolia and consequences for a sustainable management. Science in China Series D: Earth Sciences, 2002, 45, 125-131.	0.9	21
18	Accumulation of heavy metals in native plants growing on mining-influenced sites in Jinchang: a typical industrial city (China). Environmental Earth Sciences, 2017, 76, 1.	1.3	21

#	Article	IF	CITATIONS
19	Oasis microclimate effects under different weather events in arid or hyper arid regions: a case analysis in southern Taklimakan desert and implication for maintaining oasis sustainability. Theoretical and Applied Climatology, 2019, 137, 89-101.	1.3	21
20	Response of nodulation, nitrogen fixation to salt stress in a desert legume Alhagi sparsifolia. Environmental and Experimental Botany, 2021, 183, 104348.	2.0	21
21	Two ultraviolet radiation datasets that cover China. Advances in Atmospheric Sciences, 2017, 34, 805-815.	1.9	20
22	Effects of different management intensities on soil quality of farmland during oasis development in southern Tarim Basin, Xinjiang, China. International Journal of Sustainable Development and World Ecology, 2009, 16, 295-301.	3.2	19
23	Allocation of foliar-P fractions of Alhagi sparsifolia and its relationship with soil-P fractions and soil properties in a hyperarid desert ecosystem. Geoderma, 2022, 407, 115546.	2.3	19
24	Growth, physiological characteristics and ion distribution of NaCl stressed Alhagi sparsifolia seedlings. Science Bulletin, 2008, 53, 169-176.	4.3	18
25	Quantification of Environmental Flow Requirements to Support Ecosystem Services of Oasis Areas: A Case Study in Tarim Basin, Northwest China. Water (Switzerland), 2015, 7, 5657-5675.	1.2	18
26	Negative effects of longâ€ŧerm exposure to salinity, drought, and combined stresses on halophyte <i>Halogeton glomeratus</i> . Physiologia Plantarum, 2021, 173, 2307-2322.	2.6	18
27	Alhagi sparsifolia: An ideal phreatophyte for combating desertification and land degradation. Science of the Total Environment, 2022, 844, 157228.	3.9	17
28	Groundwater Depth Affects Phosphorus But Not Carbon and Nitrogen Concentrations of a Desert Phreatophyte in Northwest China. Frontiers in Plant Science, 2018, 9, 338.	1.7	16
29	Optimal root system strategies for desert phreatophytic seedlings in the search for groundwater. Journal of Arid Land, 2015, 7, 462-474.	0.9	15
30	Impact of drought on assimilates partitioning associated fruiting physiognomies and yield quality attributes of desert grown cotton. Acta Physiologiae Plantarum, 2018, 40, 1.	1.0	15
31	High biomass production with abundant leaf litterfall is critical to ameliorating soil quality and productivity in reclaimed sandy desertification land. Journal of Environmental Management, 2020, 263, 110373.	3.8	15
32	Characteristics of meteorological factors over different landscape types during dust storm events in Cele, Xinjiang, China. Journal of Meteorological Research, 2014, 28, 576-591.	0.9	14
33	Manure application increased denitrifying gene abundance in a drip-irrigated cotton field. PeerJ, 2019, 7, e7894.	0.9	14
34	Water but not photosynthates integration exists between mother and daughter ramets of a root-derived clonal shrub. Plant Ecology, 2015, 216, 331-342.	0.7	13
35	Stoichiometry of C:N:P in the Roots of Alhagi sparsifolia Is More Sensitive to Soil Nutrients Than Aboveground Organs. Frontiers in Plant Science, 2021, 12, 698961.	1.7	13
36	Root characteristics of Alhagi sparsifolia seedlings in response to water supplement in an arid region, northwestern China. Journal of Arid Land, 2013, 5, 542-551.	0.9	12

#	Article	IF	CITATIONS
37	Characteristics of wind erosion and deposition in oasis-desert ecotone in southern margin of Tarim Basin, China. Chinese Geographical Science, 2014, 24, 658-673.	1.2	12
38	Effects of slag and biochar amendments on microorganisms and fractions of soil organic carbon during flooding in a paddy field after two years in southeastern China. Science of the Total Environment, 2022, 824, 153783.	3.9	12
39	Influence of floodwater irrigation on vegetation composition and vegetation regeneration in a Taklimakan desert oasis. Science Bulletin, 2008, 53, 156-163.	4.3	11
40	Effects of variability in landscape types on the microclimate across a desert–oasis region on the southern margins of the Tarim Basin, China. Arid Land Research and Management, 2016, 30, 89-104.	0.6	11
41	Controlling Soil Factor in Plant Growth and Salt Tolerance of Leguminous Plant Alhagi sparsifolia Shap. in Saline Deserts, Northwest China. Contemporary Problems of Ecology, 2018, 11, 111-121.	0.3	11
42	Optimizing Irrigation Strategies to Improve Water Use Efficiency of Cotton in Northwest China Using RZWQM2. Agriculture (Switzerland), 2022, 12, 383.	1.4	11
43	Effects of straw mulching practices on soil nematode communities under walnut plantation. Scientific Reports, 2020, 10, 15351.	1.6	10
44	Statistical analysis of the temporal stability of soil moisture in three desert regions of northwestern China. Environmental Earth Sciences, 2013, 70, 2249-2262.	1.3	9
45	Diversity of Root Nodule-Associated Bacteria of Diverse Legumes Along an Elevation Gradient in the Kunlun Mountains, China. Frontiers in Microbiology, 2021, 12, 633141.	1.5	9
46	Coordinated Patterns in the Allocation, Composition, and Variability of Multiple Elements Among Organs of Two Desert Shrubs Under Nitrogen Addition and Drought. Journal of Soil Science and Plant Nutrition, 2022, 22, 47-58.	1.7	9
47	Coupling Relationship of Leaf Economic and Hydraulic Traits of Alhagisparsifolia Shap. in a Hyper-Arid Desert Ecosystem. Plants, 2021, 10, 1867.	1.6	9
48	Soil property and cotton productivity changes with nutrient input intensity in the Taklimakan desert of China. Arid Land Research and Management, 2018, 32, 421-437.	0.6	8
49	Linking soil profile N2O concentration with surface flux in a cotton field under drip fertigation. Environmental Pollution, 2021, 285, 117458.	3.7	8
50	Differential physio-biochemical and yield responses of Camelina sativa L. under varying irrigation water regimes in semi-arid climatic conditions. PLoS ONE, 2020, 15, e0242441.	1.1	8
51	Intercropping of Leguminous and Non-Leguminous Desert Plant Species Does Not Facilitate Phosphorus Mineralization and Plant Nutrition. Cells, 2022, 11, 998.	1.8	8
52	Assessing landscape fragmentation in a desert-oasis region of Northwest China: patterns, driving forces, and policy implications for future land consolidation. Environmental Monitoring and Assessment, 2022, 194, 394.	1.3	7
53	Groundwater Depths Affect Phosphorus and Potassium Resorption but Not Their Utilization in a Desert Phreatophyte in Its Hyper-Arid Environment. Frontiers in Plant Science, 2021, 12, 665168.	1.7	6
54	Agronomic evaluation of polymer-coated urea and urease and nitrification inhibitors for cotton production under drip-fertigation in a dry climate. Scientific Reports, 2020, 10, 1472.	1.6	5

#	Article	IF	CITATIONS
55	Nitrous Oxide Emissions from an Alpine Grassland as Affected by Nitrogen Addition. Atmosphere, 2021, 12, 976.	1.0	5
56	Using hydro-climate elasticity estimator and geographical detector method to quantify the individual and interactive impacts on NDVI in oasis-desert ecotone. Stochastic Environmental Research and Risk Assessment, 2022, 36, 3131-3148.	1.9	5
57	Measurements of Soil Water Content Using Time Domain Reflectometry Sensor and Water Vapor in Surface Soil at the Gobi Site in the Taklimakan Desert. Journal of the Meteorological Society of Japan, 2005, 83, 987-999.	0.7	4
58	Reconstructing meteorological time series to quantify the uncertainties of runoff simulation in the ungauged Qira River Basin using data from multiple stations. Theoretical and Applied Climatology, 2016, 126, 61-76.	1.3	4
59	Intercropping Systems Modify Desert Plant-Associated Microbial Communities and Weaken Host Effects in a Hyper-Arid Desert. Frontiers in Microbiology, 2021, 12, 754453.	1.5	4
60	One-Year-Old Seedling Biomass Distribution and Root Architecture Characteristics Differed Between Two Desert Plants: <i>Tamarix ramosissima</i> and <i>Alhagi sparsifolia</i> . Arid Land Research and Management, 2013, 27, 298-302.	0.6	3
61	Optimizing Chiral Selectivity in Practical Life-Detection Instruments. Astrobiology, 2021, 21, 505-510.	1.5	3
62	Water use efficiencies, economic tradeoffs, and portfolio optimizations of diversification farm systems in a desert oasis of Northwest China. Agroforestry Systems, 2021, 95, 1703.	0.9	3
63	Phosphorus fertilization of <i>Phoebe zhennan</i> seedlings under drought reduces nitrogen assimilation. Journal of Plant Nutrition, 2022, 45, 2228-2238.	0.9	3
64	Effects of short-term nitrogen and phosphorus addition on leaf stoichiometry of a dominant alpine grass. PeerJ, 2021, 9, e12611.	0.9	3
65	Topsoil Nutrients Drive Leaf Carbon and Nitrogen Concentrations of a Desert Phreatophyte in Habitats with Different Shallow Groundwater Depths. Water (Switzerland), 2021, 13, 3093.	1.2	2
66	Foliar P-Fractions Allocation of Karelinia caspia and Tamarix ramosissima Are Driven by Soil and Groundwater Properties in a Hyper-Arid Desert Ecosystem. Frontiers in Plant Science, 2022, 13, 833869.	1.7	2
67	Water Supply Increases N Acquisition and N Resorption from Old Branches in the Leafless Shrub Calligonum caput-medusae at the Taklimakan Desert Margin. Water (Switzerland), 2021, 13, 3288.	1.2	1