
Ingmar J J Claes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9196715/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective targeting of skin pathobionts and inflammation with topically applied lactobacilli. Cell Reports Medicine, 2022, 3, 100521.	3.3	20
2	Heat-pretreated <i>Lactobacillus rhamnosus</i> GG shows enhanced survival capacity after spray drying. Drying Technology, 2022, 40, 3602-3613.	1.7	1
3	The role of lactobacilli in inhibiting skin pathogens. Biochemical Society Transactions, 2021, 49, 617-627.	1.6	23
4	Cotton and Surgical Face Masks in Community Settings: Bacterial Contamination and Face Mask Hygiene. Frontiers in Medicine, 2021, 8, 732047.	1.2	27
5	The use of 3 selected lactobacillary strains in vaginal probiotic gel for the treatment of acute Candida vaginitis: a proof-of-concept study. European Journal of Clinical Microbiology and Infectious Diseases, 2020, 39, 1551-1558.	1.3	9
6	Impact of a lactobacilli-containing gel on vulvovaginal candidosis and the vaginal microbiome. Scientific Reports, 2020, 10, 7976.	1.6	25
7	Live Biotherapeutic Products, A Road Map for Safety Assessment. Frontiers in Medicine, 2020, 7, 237.	1.2	48
8	Impact of sprayâ€drying on the pili of <i>Lactobacillus rhamnosus </i> <scp>GG</scp> . Microbial Biotechnology, 2019, 12, 849-855.	2.0	32
9	Multifactorial inhibition of lactobacilli against the respiratory tract pathogen <i>Moraxella catarrhalis</i> . Beneficial Microbes, 2018, 9, 429-439.	1.0	43
10	Carrot Juice Fermentations as Man-Made Microbial Ecosystems Dominated by Lactic Acid Bacteria. Applied and Environmental Microbiology, 2018, 84, .	1.4	62
11	Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics. International Journal of Pharmaceutics, 2016, 505, 303-318.	2.6	193
12	Piliation of Lactobacillus rhamnosus GG Promotes Adhesion, Phagocytosis, and Cytokine Modulation in Macrophages. Applied and Environmental Microbiology, 2015, 81, 2050-2062.	1.4	66
13	FUNCTIONAL MECHANISMS OF PROBIOTICS. Journal of Microbiology, Biotechnology and Food Sciences, 2015, 4, 321-327.	0.4	59
14	Novel opportunities for the exploitation of host–microbiome interactions in the intestine. Current Opinion in Biotechnology, 2015, 32, 28-34.	3.3	14
15	Probiotic attributes of the newly isolated lactic acid bacteria from infants' gut. Journal of Microbiology, Biotechnology and Food Sciences, 2015, 05, 109-115.	0.4	4
16	Bioprospecting for Functionally-Proficient Potential Probiotics. Current Nutrition and Food Science, 2015, 10, 251-263.	0.3	8
17	Biochemical characterization of the major N-acetylmuramidase from Lactobacillus buchneri. Microbiology (United Kingdom), 2014, 160, 1807-1819.	0.7	12
18	Adhesion and Nanomechanics of Pili from the Probiotic Lactobacillus rhamnosus GG. ACS Nano, 2013, 7, 3685-3697.	7.3	148

INGMAR J J CLAES

#	Article	IF	CITATIONS
19	The Highly Autoaggregative and Adhesive Phenotype of the Vaginal Lactobacillus plantarum Strain CMPG5300 Is Sortase Dependent. Applied and Environmental Microbiology, 2013, 79, 4576-4585.	1.4	53
20	Functional Analysis of Lactobacillus rhamnosus GG Pili in Relation to Adhesion and Immunomodulatory Interactions with Intestinal Epithelial Cells. Applied and Environmental Microbiology, 2012, 78, 185-193.	1.4	274
21	Deciphering the Nanometer-Scale Organization and Assembly of Lactobacillus rhamnosus GG Pili Using Atomic Force Microscopy. Langmuir, 2012, 28, 2211-2216.	1.6	47
22	Anti-inflammatory potential of probiotics: lipoteichoic acid makes a difference. Trends in Microbiology, 2012, 20, 5-10.	3.5	81
23	Lipoteichoic acid is an important microbe-associated molecular pattern of Lactobacillus rhamnosus GG. Microbial Cell Factories, 2012, 11, 161.	1.9	70
24	Genetic and Biochemical Characterization of the Cell Wall Hydrolase Activity of the Major Secreted Protein of Lactobacillus rhamnosus GG. PLoS ONE, 2012, 7, e31588.	1.1	77
25	Analysis of the Peptidoglycan Hydrolase Complement of Lactobacillus casei and Characterization of the Major Î ³ -D-Glutamyl-L-Lysyl-Endopeptidase. PLoS ONE, 2012, 7, e32301.	1.1	54
26	The major secreted protein Msp1/p75 is O-glycosylated in Lactobacillus rhamnosus GG. Microbial Cell Factories, 2012, 11, 15.	1.9	72
27	FISH analysis of Lactobacillus biofilms in the gastrointestinal tract of different hosts. Letters in Applied Microbiology, 2011, 52, 220-226.	1.0	48
28	Exopolysaccharides of <i>Lactobacillus rhamnosus</i> GG form a protective shield against innate immune factors in the intestine. Microbial Biotechnology, 2011, 4, 368-374.	2.0	150
29	Lessons from probiotic–host interaction studies in murine models of experimental colitis. Molecular Nutrition and Food Research, 2011, 55, 1441-1453.	1.5	38
30	Characterization of MabA, a modulator of <i>Lactobacillus rhamnosus</i> GG adhesion and biofilm formation. FEMS Immunology and Medical Microbiology, 2010, 59, 386-398.	2.7	82
31	Impact of lipoteichoic acid modification on the performance of the probiotic <i>Lactobacillus rhamnosus</i> GG in experimental colitis. Clinical and Experimental Immunology, 2010, 162, 306-314.	1.1	92
32	Impact of <i>luxS</i> and Suppressor Mutations on the Gastrointestinal Transit of <i>Lactobacillus rhamnosus</i> GG. Applied and Environmental Microbiology, 2008, 74, 4711-4718.	1.4	68