Tianxin Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9196627/publications.pdf

Version: 2024-02-01

50 papers	1,767 citations	22 h-index	276875 41 g-index
50	50	50	1567 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Activating P2Y1 receptors improves function in arteries with repressed autophagy. Cardiovascular Research, 2023, 119, 252-267.	3.8	10
2	Role of (pro)renin receptor in cyclosporin A-induced nephropathy. American Journal of Physiology - Renal Physiology, 2022, 322, F437-F448.	2.7	5
3	Na ⁺ -Retaining Action of COX-2 (Cyclooxygenase-2)/EP ₁ Pathway in the Collecting Duct via Activation of Intrarenal Renin-Angiotensin-Aldosterone System and Epithelial Sodium Channel. Hypertension, 2022, 79, 1190-1202.	2.7	7
4	Revisiting the relationship between (Pro)Renin receptor and the intrarenal RAS: focus on the soluble receptor. Current Opinion in Nephrology and Hypertension, 2022, 31, 351-357.	2.0	2
5	Site-1 Protease-Derived Soluble (Pro)Renin Receptor Contributes to Angiotensin II–Induced Hypertension in Mice. Hypertension, 2021, 77, 405-416.	2.7	25
6	Soluble (pro)renin receptor induces endothelial dysfunction and hypertension in mice with diet-induced obesity via activation of angiotensin II type 1 receptor. Clinical Science, 2021, 135, 793-810.	4.3	24
7	Serine Protease HTRA1 as a Novel Target Antigen in Primary Membranous Nephropathy. Journal of the American Society of Nephrology: JASN, 2021, 32, 1666-1681.	6.1	61
8	(Pro)renin receptor antagonist PRO20 attenuates nephrectomyâ€induced nephropathy in rats via inhibition of intrarenal RAS and Wnt/βâ€catenin signaling. Physiological Reports, 2021, 9, e14881.	1.7	10
9	Targeting AT ₂ receptors in renal disease. American Journal of Physiology - Renal Physiology, 2021, 320, F1025-F1027.	2.7	2
10	Mutagenesis of the Cleavage Site of Pro Renin Receptor Abrogates Angiotensin II-Induced Hypertension in Mice. Hypertension, 2021, 78, 115-127.	2.7	13
11	Soluble (Pro)Renin Receptor as a Negative Regulator of NCC (Na ⁺ -Cl [–]) Tj ETQq1 ː	1 0.78431 <i>4</i>	4 rgBT /Overlo
12	Soluble (pro)renin receptor regulation of ENaC involved in aldosterone signaling in cultured collecting duct cells. American Journal of Physiology - Renal Physiology, 2020, 318, F817-F825.	2.7	18
13	(Pro)renin receptor decoy peptide PRO20 protects against adriamycin-induced nephropathy by targeting the intrarenal renin-angiotensin system. American Journal of Physiology - Renal Physiology, 2020, 319, F930-F940.	2.7	15
14	Soluble (pro)renin receptor promotes the fibrotic response in renal proximal tubule epithelial cells in vitro via the Akt/ \hat{l}^2 -catenin/Snail signaling pathway. American Journal of Physiology - Renal Physiology, 2020, 319, F941-F953.	2.7	15
15	Soluble (pro)renin receptor treats metabolic syndrome in mice with diet-induced obesity via interaction with PPAR \hat{I}^3 . JCI Insight, 2020, 5, .	5.0	20
16	Hydrogen sulfide upregulates renal AQPâ€⊋ protein expression and promotes urine concentration. FASEB Journal, 2019, 33, 469-483.	0.5	32
17	Site-1 protease–derived soluble (pro)renin receptor targets vasopressin receptor 2 to enhance urine concentrating capability. JCI Insight, 2019, 4, .	5.0	24
18	(Pro)renin receptor contributes to pregnancy-induced sodium-water retention in rats via activation of intrarenal RAAS and î±-ENaC. American Journal of Physiology - Renal Physiology, 2019, 316, F530-F538.	2.7	14

#	Article	IF	CITATION
19	FGF21 Prevents Angiotensin II-Induced Hypertension and Vascular Dysfunction by Activation of ACE2/Angiotensin- $(1\hat{a}\in "7)$ Axis in Mice. Cell Metabolism, 2018, 27, 1323-1337.e5.	16.2	104
20	Enzymatic sources and physio-pathological functions of soluble (pro)renin receptor. Current Opinion in Nephrology and Hypertension, 2018, 27, 77-82.	2.0	16
21	Soluble (pro)renin receptor as a potential therapy for diabetes insipidus. American Journal of Physiology - Renal Physiology, 2018, 315, F1416-F1421.	2.7	2
22	Role of (pro)renin receptor in albumin overload-induced nephropathy in rats. American Journal of Physiology - Renal Physiology, 2018, 315, F1759-F1768.	2.7	27
23	Sodium Butyrate Attenuates Angiotensin IIâ€Induced Cardiac Hypertrophy by Inhibiting COX2/PGE2 Pathway via a HDAC5/HDAC6â€Dependent Mechanism. FASEB Journal, 2018, 32, 580.6.	0.5	0
24	Overexpression of ELABELA in the Renal Medulla Attenuated DOCA/saltâ€Induced Hypertension in Sprague Dawley rats. FASEB Journal, 2018, 32, 716.6.	0.5	0
25	Deficiency of mPGES-1 exacerbates renal fibrosis and inflammation in mice with unilateral ureteral obstruction. American Journal of Physiology - Renal Physiology, 2017, 312, F121-F133.	2.7	14
26	Physiology and Pathophysiology of the Intrarenal Renin-Angiotensin System: An Update. Journal of the American Society of Nephrology: JASN, 2017, 28, 1040-1049.	6.1	176
27	Collecting duct (pro)renin receptor targets ENaC to mediate angiotensin II-induced hypertension. American Journal of Physiology - Renal Physiology, 2017, 312, F245-F253.	2.7	59
28	(Pro)Renin receptor regulates potassium homeostasis through a local mechanism. American Journal of Physiology - Renal Physiology, 2017, 313, F641-F656.	2.7	15
29	Activation of Renal (Pro)Renin Receptor Contributes to High Fructose-Induced Salt Sensitivity. Hypertension, 2017, 69, 339-348.	2.7	66
30	NF-κB-dependent upregulation of (pro)renin receptor mediates high-NaCl-induced apoptosis in mouse inner medullary collecting duct cells. American Journal of Physiology - Cell Physiology, 2017, 313, C612-C620.	4.6	12
31	(Pro)renin receptor mediates albumin-induced cellular responses: role of site-1 protease-derived soluble (pro)renin receptor in renal epithelial cells. American Journal of Physiology - Cell Physiology, 2017, 313, C632-C643.	4.6	35
32	The soluble (Pro) renin receptor does not influence lithiumâ€induced diabetes insipidus but does provoke beiging of white adipose tissue in mice. Physiological Reports, 2017, 5, e13410.	1.7	14
33	A H ₂ S Donor GYY4137 Exacerbates Cisplatin-Induced Nephrotoxicity in Mice. Mediators of Inflammation, 2016, 2016, 1-10.	3.0	29
34	Activation of ENaC in collecting duct cells by prorenin and its receptor PRR: involvement of Nox4-derived hydrogen peroxide. American Journal of Physiology - Renal Physiology, 2016, 310, F1243-F1250.	2.7	67
35	High potassium promotes mutual interaction between (pro)renin receptor and the local renin-angiotensin-aldosterone system in rat inner medullary collecting duct cells. American Journal of Physiology - Cell Physiology, 2016, 311, C686-C695.	4.6	12
36	Protection of nitro-fatty acid against kidney diseases. American Journal of Physiology - Renal Physiology, 2016, 310, F697-F704.	2.7	20

#	Article	IF	CITATION
37	Soluble (pro)renin receptor via \hat{l}^2 -catenin enhances urine concentration capability as a target of liver X receptor. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1898-906.	7.1	83
38	Antidiuretic Action of Collecting Duct (Pro)Renin Receptor Downstream of Vasopressin and PGE2 Receptor EP4. Journal of the American Society of Nephrology: JASN, 2016, 27, 3022-3034.	6.1	67
39	Intrarenal renin-angiotensin system mediates fatty acid-induced ER stress in the kidney. American Journal of Physiology - Renal Physiology, 2016, 310, F351-F363.	2.7	54
40	Renal medullary (pro)renin receptor contributes to angiotensin II-induced hypertension in rats via activation of the local renin–angiotensin system. BMC Medicine, 2015, 13, 278.	5.5	63
41	Aliskiren restores renal AQP2 expression during unilateral ureteral obstruction by inhibiting the inflammasome. American Journal of Physiology - Renal Physiology, 2015, 308, F910-F922.	2.7	42
42	Crosstalk between (Pro)renin receptor and COX-2 in the renal medulla during angiotensin II-induced hypertension. Current Opinion in Pharmacology, 2015, 21, 89-94.	3.5	26
43	COX-2 mediates angiotensin Il-induced (pro)renin receptor expression in the rat renal medulla. American Journal of Physiology - Renal Physiology, 2014, 307, F25-F32.	2.7	51
44	Prostaglandin E-Prostanoid ₄ Receptor Mediates Angiotensin II–Induced (Pro)Renin Receptor Expression in the Rat Renal Medulla. Hypertension, 2014, 64, 369-377.	2.7	64
45	The tempo of cardiovascular and metabolic responses to fasting is different between lean and obese mice. FASEB Journal, 2010, 24, 978.15.	0.5	O
46	Hydrogen peroxide stimulates chloride secretion in primary inner medullary collecting duct cells via mPGES-1-derived PGE ₂ . American Journal of Physiology - Renal Physiology, 2007, 293, F1571-F1576.	2.7	26
47	Kidney-specific gene targeting: Insight into thiazolidinedione-induced fluid retention (Review Article). Nephrology, 2006, 11, 201-206.	1.6	8
48	Expression and function of COX isoforms in renal medulla: evidence for regulation of salt sensitivity and blood pressure. American Journal of Physiology - Renal Physiology, 2006, 290, F542-F549.	2.7	69
49	Renin expression in COX-2-knockout mice on normal or low-salt diets. American Journal of Physiology - Renal Physiology, 2000, 279, F819-F825.	2.7	98
50	Low Chloride Stimulation of Prostaglandin E2Release and Cyclooxygenase-2 Expression in a Mouse Macula Densa Cell Line, Journal of Biological Chemistry, 2000, 275, 37922-37929.	3.4	145