Enrique G Michel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9195892/publications.pdf

Version: 2024-02-01

186265 233421 130 2,596 28 45 citations g-index h-index papers 133 133 133 1783 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dynamical Fluctuations as the Origin of a Surface Phase Transition in Sn/Ge (111) . Physical Review Letters, 1999, 82, 442-445.	7.8	173
2	Early stages of the alkali-metal-promoted oxidation of silicon. Physical Review B, 1988, 38, 13399-13406.	3.2	101
3	Initial stages of the growth of Fe on Si(111)7×7. Physical Review B, 1993, 47, 16048-16051.	3.2	84
4	Noncovalent Functionalization and Charge Transfer in Antimonene. Angewandte Chemie - International Edition, 2017, 56, 14389-14394.	13.8	83
5	Electronic structure of iron silicides grown on Si(100) determined by photoelectron spectroscopies. Physical Review B, 1992, 45, 14042-14051.	3.2	76
6	Electron Wave Function at a Vicinal Surface: Switch from Terrace to Step Modulation. Physical Review Letters, 2000, 84, 6110-6113.	7.8	72
7	Observation of a Mott Insulating Ground State forSn/Ge(111)at Low Temperature. Physical Review Letters, 2006, 96, 126103.	7.8	67
8	Structural and electronic properties of K/Si(100)2×1. Physical Review B, 1992, 45, 11811-11822.	3.2	63
9	Quantum Well States and Short Period Oscillations of the Density of States at the Fermi Level in Cu Films Grown on fcc Co(100). Physical Review Letters, 1996, 77, 3455-3458.	7.8	62
10	Mechanism of alkaliâ€promoted oxidation of silicon. Applied Physics Letters, 1987, 51, 1714-1716.	3.3	60
11	Large Dzyaloshinskii-Moriya interaction induced by chemisorbed oxygen on a ferromagnet surface. Science Advances, 2020, 6, eaba4924.	10.3	60
12	Alkali-induced oxidation of silicon. Surface Science, 1987, 189-190, 245-251.	1.9	54
13	Liquid phase exfoliation of antimonene: systematic optimization, characterization and electrocatalytic properties. Journal of Materials Chemistry A, 2019, 7, 22475-22486.	10.3	54
14	Ultrathin gate oxides formed by catalytic oxidation of silicon. Applied Physics Letters, 1987, 50, 1660-1662.	3.3	53
15	Nature of the Low-Temperature3×3Surface Phase of Pb/Ge(111). Physical Review Letters, 1999, 82, 2524-2527.	7.8	47
16	Surface characterization of epitaxial, semiconducting, FeSi2grown on Si(100). Applied Physics Letters, 1991, 59, 99-101.	3.3	45
17	K/Si(100) 2 \tilde{A} — 1: A Case Study for the Transfer of Charge between Alkali Metals and Semiconductor Surfaces. Europhysics Letters, 1988, 5, 727-732.	2.0	44
18	Phonon Softening, Chaotic Motion, and Order-Disorder Transition inSn/Ge(111). Physical Review Letters, 2003, 91, 016103.	7.8	43

#	Article	IF	CITATIONS
19	Atomic structure of the reactive Fe/Si(111)7×7 interface. Physical Review B, 1997, 55, R7315-R7318.	3.2	40
20	Synergistic Effect of Covalent Bonding and Physical Encapsulation of Sulfur in the Pores of a Microporous COF to Improve Cycling Performance in Li‧ Batteries. Chemistry - A European Journal, 2019, 25, 12394-12404.	3.3	37
21	Properties of potassium adsorbed on Si(100)2 \tilde{A} —1. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1989, 7, 1885-1888.	2.1	36
22	Fermi surface and electronic structure of Pb/Ge(111). Physical Review B, 1998, 57, 14758-14765.	3.2	36
23	Photoemission study of a high-Tcsuperconducting Bi-Sr-Ca-Cu oxide. Physical Review B, 1988, 38, 5146-5149.	3.2	35
24	A structural study of the K adsorption site on a Si(001)2 $\tilde{A}-1$ surface: Dimer, caves or both. Surface Science, 1989, 211-212, 31-38.	1.9	33
25	Epitaxial iron silicides: geometry, electronic structure and applications. Applied Surface Science, 1997, 117-118, 294-302.	6.1	33
26	Unveiling the oxidation behavior of liquid-phase exfoliated antimony nanosheets. 2D Materials, 2020, 7, 025039.	4.4	33
27	A new high temperature superconductor: Ba2SmCu3O9â^'x. Solid State Communications, 1987, 63, 507-510.	1.9	32
28	Iron silicides grown on Si(100): metastable and stable phases. Surface Science, 1997, 371, 297-306.	1.9	31
29	Determination of the Fe/Si(111) phase diagram by means of photoelectron spectroscopies. Surface Science, 1993, 287-288, 490-494.	1.9	30
30	The growth and characterization of iron silicides on Si(100). Surface Science, 1991, 251-252, 59-63.	1.9	28
31	Geometric and electronic structure of epitaxial iron silicides. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1993, 11, 929-933.	2.1	28
32	Fermi surface gapping and nesting in the surface phase transition of Snâ^•Cu(100). Physical Review B, 2005, 72, .	3.2	28
33	Interaction of potassium with Si(100)2 × 1. Vacuum, 1990, 41, 564-566.	3.5	27
34	Exfoliation of Alphaâ€Germanium: A Covalent Diamondâ€Like Structure. Advanced Materials, 2021, 33, e2006826.	21.0	27
35	Adsorption sites of Rb and Br on the Si(100)2 $ ilde{A}$ — 1 surface. Surface Science, 1991, 251-252, 483-487.	1.9	26
36	Photoelectron diffraction study of theSi-rich3Câ^'SiC(001)â€"(3×2)structure. Physical Review B, 2004, 70,	3.2	26

#	Article	IF	CITATIONS
37	Noncovalent Functionalization and Charge Transfer in Antimonene. Angewandte Chemie, 2017, 129, 14581-14586 Structural Origin of the Sn <mml:math display="inline" mml:mpx4<="" mml:mpx<="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML" xxmml:mpx4<=""><td>2.0</td><td>26</td></mml:math>	2.0	26
38	Structural Origin of the Sn <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>d</mml:mi>d</mml:math> Core Level Line Shape in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Sn</mml:mi><mml:mo><mml:mi>Ge</mml:mi><mml:mo><mml:mo><mml:mi>Ge</mml:mi><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mi>Ge</mml:mi></mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml< td=""><td></td><td></td></mml<></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:math>		

#	Article	IF	Citations
55	Structure of the indium-rich InSb(001) surface. Physical Review B, 2010, 82, .	3.2	14
56	Effect of photoelectron mean free path on the photoemission cross-section of $Cu(111)$ and $Ag(111)$ Shockley states. Physical Review B, 2011, 84, .	3.2	14
57	Pyrenetetraone-based covalent organic framework as an effective electrocatalyst for oxygen reduction reaction. Nano Research, 2022, 15, 3907-3912.	10.4	14
58	interface formation studied by photoelectron diffraction. Surface Science, 1997, 377-379, 856-860.	1.9	13
59	Surface electronic structure of metastable FeSi(CsCl)(111) epitaxially grown on Si(111). Physical Review B, 1997, 55, R16065-R16068.	3.2	12
60	Oxygen interaction with Si(100) and. Surface Science, 1997, 377-379, 650-654.	1.9	12
61	NEXAFS experiment and multiple scattering calculations onKO2:Effects on the π resonance in the solid phase. Physical Review B, 2002, 66, .	3.2	12
62	Phonon dispersion curves of the Ge(111) \hat{a} c(2 \hat{A} -8) surface determined by He atom scattering. Physical Review B, 2006, 74, .	3.2	12
63	Surface electronic structure of a vicinal Cu crystal. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1194-1197.	2.1	11
64	The Fermi surface of Sn/Ge(111) and Pb/Ge(111). Journal of Physics Condensed Matter, 2007, 19, 355008.	1.8	11
65	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mi mathvariant="normal">Sn</mml:mi><mml:mo>â•</mml:mo><mml:mi mathvariant="normal">Sn</mml:mi><mml:mo>af•</mml:mo><mml:mi mathvariant="normal">Sn</mml:mi><mml:mi><mml:mo></mml:mo>(<mml:mn>100</mml:mn><mml:mo>)</mml:mo>)</mml:mi></mml:mrow>	3.2 /mml:mo>	11
66	Ordered structures of pentacene on Cu(110). Journal of Vacuum Science & Technology B, 2009, 27, 863-867.	1.3	11
67	Epitaxy of Pt on Au(001): Growth mode, interface state and Pt core-level shifts. Surface Science, 1988, 198, L365-L374.	1.9	10
68	Study of the electronic structure of iron silicides grown on Si(100)2 \tilde{A} — 1 by reactive deposition epitaxy. Surface Science, 1992, 269-270, 1011-1015.	1.9	10
69	Origin of the surface metallization in single-domain K/Si(100)2×1. Physical Review B, 1996, 54, R14277-R14280.	3.2	10
70	Phase transition of submonolayer Pb/Ge(111): αâ^'3×3R30° â†" 3 × 3atâ^1⁄4 250 K. Applied Surface Science, 123-124, 626-630.	1998, 6.1	10
71	Electronic band structure of epitaxial3×3R30°Îμ-FeSi(111)/Si(111). Physical Review B, 1998, 57, 1414-1417.	3.2	10
72	Interaction of atomic hydrogen with the \hat{l}^2 -SiC(100) 3 \tilde{A} —2 surface and subsurface. Journal of Chemical Physics, 2007, 127, 164716.	3.0	10

#	Article	IF	Citations
73	Short wavelength, spin-polarized quantum-well states in high quality Cu films on FCC-Co(100). Journal of Magnetism and Magnetic Materials, 1999, 203, 126-128.	2.3	9
74	Surface x-ray diffraction analysis using a genetic algorithm: the case of Sn/Cu(100)-(3sqrt {2}imes) Tj ETQq0 0 0	rgBT /Ove	erlogk 10 Tf 5
75	Preparation of high-quality few-layers bismuthene hexagons. Applied Materials Today, 2022, 26, 101360.	4.3	9
76	Structural phase transition during heteroepitaxial growth of iron silicides on Si(111). Applied Surface Science, 1993, 70-71, 578-582.	6.1	8
77	Surface phase transition and electronic structure of c(5â^š2×â^š2)R45°-Pb/Cu(100). Surface Science, 2006, 600, 3851-3855.	1.9	8
78	Continuousâ€Flow Synthesis of Highâ€Quality Fewâ€Layer Antimonene Hexagons. Advanced Functional Materials, 2021, 31, 2101616.	14.9	8
79	Adsorption sites of Br on Si(211) investigated with X-ray standing wave fields. Surface Science, 1992, 269-270, 89-93.	1.9	7
80	The adsorption geometry of Cs on Si(110). Applied Surface Science, 1992, 56-58, 457-462.	6.1	7
81	Surface dangling bond state in Si(111) and epitaxial \hat{l}^2 -FeSi2 films: a comparative photoelectron spectroscopy study. Surface Science, 1995, 330, 34-40.	1.9	7
82	Metallization onset in. Surface Science, 1997, 377-379, 220-224.	1.9	7
83	Band structure and gap opening in Pb/Ge(111). Surface Science, 1998, 402-404, 742-745.	1.9	7
84	Phonon dynamics of the Sna $\hat{\cdot}$ Ge(111) surface at room temperature and low temperature determined by helium-atom scattering. Physical Review B, 2005, 71, .	3.2	7
85	Effect of a skin-deep surface zone on the formation of a two-dimensional electron gas at a semiconductor surface. Physical Review B, 2016, 94, .	3.2	7
86	Local versus non-local character of the alkali-promoted oxidation of silicon. Vacuum, 1990, 41, 787-789.	3.5	6
87	X-ray standing wave study of alkali-metal/silicon interfaces. Journal of Physics Condensed Matter, 1993, 5, A85-A88.	1.8	6
88	Spin-polarized quantum well states. Journal of Electron Spectroscopy and Related Phenomena, 1999, 101-103, 367-370.	1.7	6
89	Electronic band structure of Ge(111)(3 \tilde{A} —3)-Pb. Surface Science, 1999, 433-435, 337-341.	1.9	6
90	Probing unoccupied bulk bands via the cross section of quantum well states in thin films. Surface Science, 2001, 482-485, 464-469.	1.9	6

#	Article	IF	Citations
91	Accurate band mapping via photoemission from thin films. Physical Review B, 2004, 69, .	3.2	6
92	\hat{a} †" \hat{a} €‰(3 \tilde{A} — 3) phase transition in Pb/Ge(111) and Sn/Ge(111): a phenomenological study on the phase transiti anomalies and the role of defects. Nanotechnology, 2005, 16, 325-333.	ion 2.6	6
93	In-plane N \tilde{A} ©el wall chirality and orientation of interfacial Dzyaloshinskii-Moriya vector in magnetic films. Physical Review B, 2020, 102, .	3.2	6
94	Fermi surface of a triangular lattice overlayer: Pb/Ge(111) \hat{l} ±-phase. Journal of Electron Spectroscopy and Related Phenomena, 1999, 101-103, 361-365.	1.7	5
95	Structural phase transitions in two-dimensional systems: $Pb/Ge(111)$ and $Sn/Ge(111)$. Zeitschrift Fur Kristallographie - Crystalline Materials, 2005, 220, 663-671.	0.8	5
96	Electronic structure of Sn/Cu(100)-(2sqrt $\{2\}$)mathrm $\{R\}$ 45 $^{\text{circ}}$. Journal of Physics Condensed Matter, 2009, 21, 055001.	1.8	5
97	Order-disorder phase transition of vacancies in surfaces: The case of Sn/Cu(001)-0.5 ML. Physical Review B, 2010, 82, .	3.2	5
98	Determination of the photoelectron reference plane in nanostructured surfaces. New Journal of Physics, 2011, 13, 103013.	2.9	5
99	Disclosing the origin of the postcoalescence compressive stress in polycrystalline films by nanoscale stress mapping. Physical Review B, 2018, 98, .	3.2	5
100	X-ray standing-wave study of alkali-metal/Si(111)7×7 interfaces. Physical Review B, 1993, 48, 12023-12031.	3.2	4
101	Phonon dynamics of the Sn/Ge(1 1 1)-(3 \tilde{A} — 3) surface. Applied Surface Science, 2004, 237, 86-92.	6.1	4
102	Surface electronic structure of Pb/Cu(100): surface band filling and folding. Journal of Physics Condensed Matter, 2009, 21, 474216.	1.8	4
103	Surface electronic structure of InSb(001)-c(8×2). Surface Science, 2013, 608, 22-30.	1.9	4
104	Adsorption of Rb on Si(211)2×1 studied by the xâ€ray standing wave technique. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1993, 11, 1812-1816.	2.1	3
105	Quantum well states and interface quality in Cu/Co(100)/Cu(100) system. Surface Science, 1998, 402-404, 377-381.	1.9	3
106	Resonant quantum well states in thin copper films on fcc-Co(100). Surface Science, 1999, 433-435, 425-429.	1.9	3
107	Electronic structure and reactivity of the Co/MoS2(0 0 0 1) interface. Surface Science, 2001, 482-485, $664-668$.	1.9	3
108	The photoelectron diffraction technique applied to advanced materials. Journal of Physics Condensed Matter, 2004, 16, S3441-S3450.	1.8	3

#	Article	IF	Citations
109	RbBr/Si(111) interface studied by the X-ray standing wave method. Surface Science, 1993, 287-288, 288-293.	1.9	2
110	Quantum well states in high-quality Cu films deposited on Co (100): A high resolution photoemission study. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 1368-1373.	2.1	2
111	XSW study of oxygen/alkali metal/Si(111) interfaces. Surface Science, 2001, 482-485, 1283-1286.	1.9	2
112	Empty Interface State in Pt/Au(001) Revealed by Inverse Photoemission. Europhysics Letters, 1987, 4, 603-608.	2.0	1
113	Inverse photoemission of metal epitaxial growth: Evidence for an empty interface state. Surface Science, 1987, 189-190, 393-398.	1.9	1
114	Electronic band structure of (100). Journal of Physics Condensed Matter, 1997, 9, 1871-1876.	1.8	1
115	INTERPLAY OF ELECTRONIC AND GEOMETRIC STRUCTURE IN A MODEL SYSTEM: EPITAXIAL IRON SILICIDES. Surface Review and Letters, 1997, 04, 319-326.	1.1	1
116	Symmetry breaking and atomic displacements in the 3 \tilde{A} -3 surface phase of Pb/Ge(111). Surface Science, 2000, 454-456, 191-195.	1.9	1
117	NEXAFS multiple scattering calculations of KO2. Journal of Synchrotron Radiation, 2001, 8, 719-721.	2.4	1
118	Electronic structure of SixSn($1\hat{a}^*x$)/Si(111)-($3\tilde{A}$ —3)R30 \hat{A}^o phases. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1298-1301.	2.1	1
119	Perspectives on surface science. Journal of Physics Condensed Matter, 2010, 22, 080302.	1.8	1
120	Enhancement of Tc, orthorhombicity and AC magnetic shielding in argon preheated HTC superconductor (Y1â^'xSmx)(SrBa)Cu3O6+z. IOP Conference Series: Materials Science and Engineering, 2010, 13, 012008.	0.6	1
121	The dimensionality reduction at surfaces as a playground for many-body and correlation effects. Journal of Physics Condensed Matter, 2013, 25, 090301.	1.8	1
122	Lateral confinement effects of <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mover accent="true"><mml:mi mathvariant="normal">M</mml:mi><mml:mo stretchy="true">Â-</mml:mo></mml:mover></mml:math> -point Tamm state in vicinal Cu(100) surfaces.	1.9	1
123	Surface Science, 2014, 630, 144-152. Crystalline Structure and Vacancy Ordering across a Surface Phase Transition in Sn/Cu(001). Journal of Physical Chemistry B, 2018, 122, 745-756.	2.6	1
124	Acidic triggering of reversible electrochemical activity in a pyrenetetraone-based 2D polymer. Polymer, 2021, 212, 123273.	3.8	1
125	Potassium interaction with Si(100)2×1 surface. Vacuum, 1990, 40, 230.	3.5	0
126	Photoelectron yield excited by an X-ray standing wave with synchrotron radiation: energy-dispersive measurements with a magnetic analyzer. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1991, 308, 278-281.	1.6	0

#	Article	IF	CITATIONS
127	The (3 × 2) β-SiC(001) surface reconstruction investigated by photoelectron diffraction in the backscattering regime. European Physical Journal Special Topics, 2006, 132, 49-55.	0.2	O
128	Fermi surface analysis using surface methods. Journal of Physics Condensed Matter, 2007, 19, 350301.	1.8	0
129	Evolution of the electronic structure during the epitaxial growth of Au on Pt(100). Surface Science, 2016, 646, 126-131.	1.9	0
130	Understanding the intrinsic compression in polycrystalline films through a mean-field atomistic model. Journal Physics D: Applied Physics, 2021, 54, 065302.	2.8	0