Maria Pia Cosma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9195776/publications.pdf

Version: 2024-02-01

147566 214527 4,570 47 31 47 h-index citations g-index papers 49 49 49 5741 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Ordered Recruitment of Transcription and Chromatin Remodeling Factors to a Cell Cycle– and Developmentally Regulated Promoter. Cell, 1999, 97, 299-311.	13.5	652
2	Chromatin Fibers Are Formed by Heterogeneous Groups of Nucleosomes InÂVivo. Cell, 2015, 160, 1145-1158.	13.5	560
3	Impaired retinal function and vitamin A availability in mice lacking retinol-binding protein. EMBO Journal, 1999, 18, 4633-4644.	3.5	433
4	A Yeast Synthetic Network for In Vivo Assessment of Reverse-Engineering and Modeling Approaches. Cell, 2009, 137, 172-181.	13.5	348
5	The Multiple Sulfatase Deficiency Gene Encodes an Essential and Limiting Factor for the Activity of Sulfatases. Cell, 2003, 113, 445-456.	13.5	321
6	Identification of Cohesin Association Sites at Centromeres and along Chromosome Arms. Cell, 1999, 98, 847-858.	13.5	290
7	Ordered Recruitment. Molecular Cell, 2002, 10, 227-236.	4.5	227
8	Periodic Activation of Wnt/β-Catenin Signaling Enhances Somatic Cell Reprogramming Mediated by Cell Fusion. Cell Stem Cell, 2008, 3, 493-507.	5.2	136
9	Cdk1 Triggers Association of RNA Polymerase to Cell Cycle Promoters Only after Recruitment of the Mediator by SBF. Molecular Cell, 2001, 7, 1213-1220.	4.5	122
10	Correction of Hunter syndrome in the MPSII mouse model by AAV2/8-mediated gene delivery. Human Molecular Genetics, 2006, 15, 1225-1236.	1.4	88
11	Systemic inflammation and neurodegeneration in a mouse model of multiple sulfatase deficiency. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4506-4511.	3.3	88
12	Super-resolution microscopy reveals how histone tailÂacetylation affects DNA compaction within nucleosomes in vivo. Nucleic Acids Research, 2019, 47, 8470-8484.	6.5	84
13	Reprogramming MÃ $\frac{1}{4}$ ller glia via in vivo cell fusion regenerates murine photoreceptors. Journal of Clinical Investigation, 2016, 126, 3104-3116.	3.9	77
14	Molecular and functional analysis of SUMF1 mutations in multiple sulfatase deficiency. Human Mutation, 2004, 23, 576-581.	1.1	63
15	Multistep, sequential control of the trafficking and function of the multiple sulfatase deficiency gene product, SUMF1 by PDI, ERGIC-53 and ERp44. Human Molecular Genetics, 2008, 17, 2610-2621.	1.4	62
16	Daughterâ€specific repression of Saccharomyces cerevisiae HO : Ash1 is the commander. EMBO Reports, 2004, 5, 953-957.	2.0	61
17	Mutations in the Extracellular Domain Cause RET Loss of Function by a Dominant Negative Mechanism. Molecular and Cellular Biology, 1998, 18, 3321-3329.	1.1	54
18	Temporal Perturbation of the Wnt Signaling Pathway in the Control of Cell Reprogramming Is Modulated by TCF1. Stem Cell Reports, 2014, 2, 707-720.	2.3	52

#	Article	IF	Citations
19	Mutational analysis of the HGSNAT gene in Italian patients with mucopolysaccharidosis IIIC (Sanfilippo) Tj ETQq1 1	0.784314 1.1	rgBT /Over
20	Cellâ€fusionâ€mediated somaticâ€cell reprogramming: A mechanism for tissue regeneration. Journal of Cellular Physiology, 2010, 223, 6-13.	2.0	49
21	T-cell factor 3 (Tcf3) deletion increases somatic cell reprogramming by inducing epigenome modifications. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11912-11917.	3.3	49
22	Advanced microscopy methods for visualizing chromatin structure. FEBS Letters, 2015, 589, 3023-3030.	1.3	48
23	Safety of Arylsulfatase A Overexpression for Gene Therapy of Metachromatic Leukodystrophy. Human Gene Therapy, 2007, 18, 821-836.	1.4	47
24	Sulphatase activities are regulated by the interaction of sulphataseâ€modifying factor 1 with SUMF2. EMBO Reports, 2005, 6, 655-660.	2.0	45
25	Correction of CNS defects in the MPSII mouse model via systemic enzyme replacement therapy. Human Molecular Genetics, 2010, 19, 4871-4885.	1.4	43
26	Wnt/Tcf1 pathway restricts embryonic stem cell cycle through activation of the Ink4/Arf locus. PLoS Genetics, 2017, 13, e1006682.	1.5	43
27	Sulfatase modifying factor 1 trafficking through the cells: from endoplasmic reticulum to the endoplasmic reticulum. EMBO Journal, 2007, 26, 2443-2453.	3.5	42
28	How to Turn a Genetic Circuit into a Synthetic Tunable Oscillator, or a Bistable Switch. PLoS ONE, 2009, 4, e8083.	1.1	42
29	Dedifferentiation, transdifferentiation and cell fusion: <i>inÂvivo</i> reprogramming strategies for regenerative medicine. FEBS Journal, 2019, 286, 1074-1093.	2.2	39
30	IDS Crossing of the Blood-Brain Barrier Corrects CNS Defects in MPSII Mice. American Journal of Human Genetics, 2009, 85, 296-301.	2.6	38
31	(Po)STAC (Polycistronic SunTAg modified CRISPR) enables live-cell and fixed-cell super-resolution imaging of multiple genes. Nucleic Acids Research, 2018, 46, e30-e30.	6.5	36
32	Sulfatase activities towards the regulation of cell metabolism and signaling in mammals. Cellular and Molecular Life Sciences, 2010, 67, 769-780.	2.4	30
33	Functional Rescue of Dopaminergic Neuron Loss in Parkinson's Disease Mice After Transplantation of Hematopoietic Stem and Progenitor Cells. EBioMedicine, 2016, 8, 83-95.	2.7	28
34	Super resolution imaging of chromatin in pluripotency, differentiation, and reprogramming. Current Opinion in Genetics and Development, 2017, 46, 186-193.	1.5	27
35	Endogenous Mobilization of Bone-Marrow Cells Into the Murine Retina Induces Fusion-Mediated Reprogramming of Müller Glia Cells. EBioMedicine, 2018, 30, 38-51.	2.7	25
36	Super resolution microscopy reveals how elongating RNA polymerase II and nascent RNA interact with nucleosome clutches. Nucleic Acids Research, 2022, 50, 175-190.	6.5	24

#	Article	IF	CITATIONS
37	The Wnt/ \hat{l}^2 -Catenin Signaling Pathway Tips the Balance Between Apoptosis and Reprograming of Cell Fusion Hybrids. Stem Cells, 2010, 28, 1940-1949.	1.4	23
38	Sulfatase modifying factor 1–mediated fibroblast growth factor signaling primes hematopoietic multilineage development. Journal of Experimental Medicine, 2010, 207, 1647-1660.	4.2	22
39	Somatic cell reprogramming control: Signaling pathway modulation versus transcription factor activities. Cell Cycle, 2009, 8, 1138-1144.	1.3	17
40	Development and maturation of invariant NKT cells in the presence of lysosomal engulfment. European Journal of Immunology, 2009, 39, 2748-2754.	1.6	14
41	Multiple sulfatase deficiency in a Turkish family resulting from a novel mutation. Brain and Development, 2008, 30, 374-377.	0.6	12
42	Regulation of self-renewal and reprogramming by TCF factors. Cell Cycle, 2012, 11, 39-47.	1.3	11
43	Controlled ploidy reduction of pluripotent 4n cells generates 2n cells during mouse embryo development. Science Advances, 2019, 5, eaax4199.	4.7	11
44	\hat{l}^2 -Catenin safeguards the ground state of mousepluripotency by strengthening the robustness of the transcriptional apparatus. Science Advances, 2020, 6, eaba1593.	4.7	10
45	Loss of Heterozygosity at the RET Protooncogene Locus in a Case of Multiple Endocrine Neoplasia Type 2A. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 239-244.	1.8	10
46	Resetting epigenetic signatures to induce somatic cell reprogramming. Cellular and Molecular Life Sciences, 2013, 70, 1413-1424.	2.4	6
47	In vivo somatic cell reprogramming for tissue regeneration: the emerging role of the local microenvironment. Current Opinion in Cell Biology, 2018, 55, 119-128.	2.6	3