Yumiko Takebayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9195666/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diminished Auxin Signaling Triggers Cellular Reprogramming by Inducing a Regeneration Factor in the Liverwort <i>Marchantia polymorpha</i> . Plant and Cell Physiology, 2022, 63, 384-400.	3.1	23
2	Regulation of ammonium acquisition and use in <i>Oryza longistaminata</i> ramets under nitrogen source heterogeneity. Plant Physiology, 2022, 188, 2364-2376.	4.8	7
3	Transcriptomic, Hormonomic and Metabolomic Analyses Highlighted the Common Modules Related to Photosynthesis, Sugar Metabolism and Cell Division in Parthenocarpic Tomato Fruits during Early Fruit Set. Cells, 2022, 11, 1420.	4.1	3
4	Identification of the unique molecular framework of heterophylly in the amphibious plant <i>Callitriche palustris</i> L. Plant Cell, 2021, 33, 3272-3292.	6.6	22
5	Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature, 2020, 584, 109-114.	27.8	98
6	Diverse panicle architecture results from various combinations of Prl5/GA20ox4 and Pbl6/APO1 alleles. Communications Biology, 2020, 3, 302.	4.4	16
7	Cytokinin Signaling Is Essential for Organ Formation in <i>Marchantia polymorpha</i> . Plant and Cell Physiology, 2019, 60, 1842-1854.	3.1	41
8	Aberrant Stamen Development is Associated with Parthenocarpic Fruit Set Through Up-Regulation of Gibberellin Biosynthesis in Tomato. Plant and Cell Physiology, 2019, 60, 38-51.	3.1	35
9	Time-Course Transcriptomics Analysis Reveals Key Responses of Submerged Deepwater Rice to Flooding. Plant Physiology, 2018, 176, 3081-3102.	4.8	64
10	Jasmonic acid facilitates flower opening and floral organ development through the upregulated expression of SIMYB21 transcription factor in tomato. Bioscience, Biotechnology and Biochemistry, 2018, 82, 292-303.	1.3	41
11	WIND1 induces dynamic metabolomic reprogramming during regeneration in Brassica napus. Developmental Biology, 2018, 442, 40-52.	2.0	18
12	Jasmonates are induced by the PAMP flg22 but not the cell death-inducing elicitor Harpin in Vitis rupestris. Protoplasma, 2017, 254, 271-283.	2.1	36
13	Cytokinin-Mediated Regulation of Reactive Oxygen Species Homeostasis Modulates Stomatal Immunity in Arabidopsis. Plant Cell, 2017, 29, 543-559.	6.6	86
14	Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant Journal, 2017, 90, 61-78.	5.7	173
15	Wounding Triggers Callus Formation via Dynamic Hormonal and Transcriptional Changes. Plant Physiology, 2017, 175, 1158-1174.	4.8	214
16	Yucasin DF, a potent and persistent inhibitor of auxin biosynthesis in plants. Scientific Reports, 2017, 7, 13992.	3.3	44
17	Highly Sprouting-Tolerant Wheat Grain Exhibits Extreme Dormancy and Cold Imbibition-Resistant Accumulation of Abscisic Acid. Plant and Cell Physiology, 2016, 57, 715-732.	3.1	40
18	The wheat ABA hypersensitive ERA8 mutant is associated with increased preharvest sprouting tolerance and altered hormone accumulation. Euphytica, 2016, 212, 229-245.	1.2	20

#	Article	IF	CITATIONS
19	Local Auxin Biosynthesis Mediated by a YUCCA Flavin Monooxygenase Regulates Haustorium Development in the Parasitic Plant <i>Phtheirospermum japonicum</i> . Plant Cell, 2016, 28, 1795-1814.	6.6	102
20	Effector-Triggered Immunity Determines Host Genotype-Specific Incompatibility in Legume– <i>Rhizobium</i> Symbiosis. Plant and Cell Physiology, 2016, 57, 1791-1800.	3.1	94
21	Presence versus absence of CYP734A50 underlies the style-length dimorphism in primroses. ELife, 2016, 5, .	6.0	86
22	Targeting Hormone-Related Pathways to Improve Grain Yield in Rice: A Chemical Approach. PLoS ONE, 2015, 10, e0131213.	2.5	26
23	Abscisic acid (ABA) regulates grape bud dormancy, and dormancy release stimuli may act through modification of ABA metabolism. Journal of Experimental Botany, 2015, 66, 1527-1542.	4.8	174
24	Auxin Produced by the Indole-3-Pyruvic Acid Pathway Regulates Development and Gemmae Dormancy in the Liverwort <i>Marchantia polymorpha</i> . Plant Cell, 2015, 27, 1650-1669.	6.6	138
25	A plant U-box protein, PUB4, regulates asymmetric cell division and cell proliferation in the root meristem. Development (Cambridge), 2015, 142, 444-453.	2.5	61
26	Functional characterization and developmental expression profiling of gibberellin signalling components in Vitis vinifera. Journal of Experimental Botany, 2015, 66, 1463-1476.	4.8	36
27	Loss ofArabidopsis thalianaSeed Dormancy is Associated with Increased Accumulation of the GID1 GA Hormone Receptors. Plant and Cell Physiology, 2015, 56, 1773-1785.	3.1	54
28	Grain dormancy loss is associated with changes in ABA and GA sensitivity and hormone accumulation in bread wheat, <i>Triticum aestivum</i> (L.). Seed Science Research, 2015, 25, 179-193.	1.7	57
29	Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants. Plant and Cell Physiology, 2015, 56, 1641-1654.	3.1	142
30	A balanced JA/ABA status may correlate with adaptation to osmotic stress in Vitis cells. Journal of Plant Physiology, 2015, 185, 57-64.	3.5	17
31	Auxin Overproduction in Shoots Cannot Rescue Auxin Deficiencies in Arabidopsis Roots. Plant and Cell Physiology, 2014, 55, 1072-1079.	3.1	202
32	Salt adaptation requires efficient fine-tuning of jasmonate signalling. Protoplasma, 2014, 251, 881-898.	2.1	41
33	Sterol Side Chain Reductase 2 Is a Key Enzyme in the Biosynthesis of Cholesterol, the Common Precursor of Toxic Steroidal Glycoalkaloids in Potato Â. Plant Cell, 2014, 26, 3763-3774.	6.6	206
34	The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways. Scientific Reports, 2014, 4, 7399.	3.3	106
35	Combining association mapping and transcriptomics identify <i><scp>HD2B</scp></i> histone deacetylase as a genetic factor associated with seed dormancy in <i>Arabidopsis thaliana</i> . Plant Journal, 2013, 74, 815-828.	5.7	64
36	GNOM/FEWER ROOTS is Required for the Establishment of an Auxin Response Maximum for Arabidopsis Lateral Root Initiation. Plant and Cell Physiology, 2013, 54, 406-417.	3.1	46

#	Article	IF	CITATIONS
37	Phytohormones Related to Host Plant Manipulation by a Gall-Inducing Leafhopper. PLoS ONE, 2013, 8, e62350.	2.5	46
38	Analysis of the Developmental Roles of the <i>Arabidopsis</i> Gibberellin 20-Oxidases Demonstrates That <i>GA20ox1</i> , <i>-2</i> , and <i>-3</i> Are the Dominant Paralogs. Plant Cell, 2012, 24, 941-960.	6.6	172