Nadja C Souza-Pinto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9195504/publications.pdf

Version: 2024-02-01

87 8,378 45 84
papers citations h-index g-index

91 91 91 10839 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Mitochondria and reactive oxygen species. Free Radical Biology and Medicine, 2009, 47, 333-343.	1.3	904
2	Nutrient-Sensitive Mitochondrial NAD+ Levels Dictate Cell Survival. Cell, 2007, 130, 1095-1107.	13.5	855
3	Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis, 2008, 30, 2-10.	1.3	511
4	Caspase-3-dependent Cleavage of Bcl-2 Promotes Release of Cytochrome c. Journal of Biological Chemistry, 1999, 274, 21155-21161.	1.6	390
5	Mitochondria as a Source of Reactive Oxygen and Nitrogen Species: From Molecular Mechanisms to Human Health. Antioxidants and Redox Signaling, 2013, 18, 2029-2074.	2.5	344
6	Defective DNA base excision repair in brain from individuals with Alzheimer's disease and amnestic mild cognitive impairment. Nucleic Acids Research, 2007, 35, 5545-5555.	6.5	253
7	Regulation of reactive oxygen species, DNA damage and c-Myc function by peroxiredoxin 1. Oncogene, 2005, 24, 8038-8050.	2.6	205
8	Human Embryonic Stem Cells Have Enhanced Repair of Multiple Forms of DNA Damage. Stem Cells, 2008, 26, 2266-2274.	1.4	193
9	Removal of Oxidative DNA Damage via FEN1-Dependent Long-Patch Base Excision Repair in Human Cell Mitochondria. Molecular and Cellular Biology, 2008, 28, 4975-4987.	1.1	192
10	Mitochondrial DNA repair of oxidative damage in mammalian cells. Gene, 2002, 286, 127-134.	1.0	179
11	Repair of Formamidopyrimidines in DNA Involves Different Glycosylases. Journal of Biological Chemistry, 2005, 280, 40544-40551.	1.6	174
12	Novel DNA mismatch-repair activity involving YB-1 in human mitochondria. DNA Repair, 2009, 8, 704-719.	1.3	174
13	Mitochondrial and nuclear DNA-repair capacity of various brain regions in mouse is altered in an age-dependent manner. Neurobiology of Aging, 2006, 27, 1129-1136.	1.5	168
14	Mitochondrial UCP4 Mediates an Adaptive Shift in Energy Metabolism and Increases the Resistance of Neurons to Metabolic and Oxidative Stress. NeuroMolecular Medicine, 2006, 8, 389-414.	1.8	167
15	Age-associated change in mitochondrial DNA damage. Free Radical Research, 1998, 29, 573-579.	1.5	158
16	Characterization of Oxidative Guanine Damage and Repair in Mammalian Telomeres. PLoS Genetics, 2010, 6, e1000951.	1.5	154
17	DNA repair, mitochondria, and neurodegeneration. Neuroscience, 2007, 145, 1318-1329.	1.1	145
18	Base excision repair in nuclear and mitochondrial DNA. Progress in Molecular Biology and Translational Science, 2001, 68, 285-297.	1.9	144

#	Article	IF	CITATIONS
19	Cockayne syndrome group B protein promotes mitochondrial DNA stability by supporting the DNA repair association with the mitochondrial membrane. FASEB Journal, 2010, 24, 2334-2346.	0.2	124
20	Age-associated increase in 8-oxo-deoxyguanosine glycosylase/AP lyase activity in rat mitochondria. Nucleic Acids Research, 1999, 27, 1935-1942.	6.5	120
21	The mitochondrial transcription factor A functions in mitochondrial base excision repair. DNA Repair, 2010, 9, 1080-1089.	1.3	120
22	DNA repair and aging in mouse liver: 8-oxodG glycosylase activity increase in mitochondrial but not in nuclear extracts. Free Radical Biology and Medicine, 2001, 30, 916-923.	1.3	112
23	Mitochondrial and nuclear DNA base excision repair are affected differently by caloric restriction. FASEB Journal, 2004, 18, 595-597.	0.2	109
24	Base excision repair capacity in mitochondria and nuclei: tissueâ€specific variations. FASEB Journal, 2002, 16, 1895-1902.	0.2	105
25	Evidence that OGG1 Glycosylase Protects Neurons against Oxidative DNA Damage and Cell Death under Ischemic Conditions. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 680-692.	2.4	101
26	The Human Werner Syndrome Protein Stimulates Repair of Oxidative DNA Base Damage by the DNA Glycosylase NEIL1. Journal of Biological Chemistry, 2007, 282, 26591-26602.	1.6	100
27	Mitochondrial repair of 8-oxoguanine is deficient in Cockayne syndrome group B. Oncogene, 2002, 21, 8675-8682.	2.6	99
28	Mitochondria and mitochondrial DNA as relevant targets for environmental contaminants. Toxicology, 2017, 391, 100-108.	2.0	98
29	Cockayne Syndrome Group B Protein Stimulates Repair of Formamidopyrimidines by NEIL1 DNA Glycosylase. Journal of Biological Chemistry, 2009, 284, 9270-9279.	1.6	92
30	Mitochondrial calcium transport and the redox nature of the calcium-induced membrane permeability transition. Free Radical Biology and Medicine, 2018, 129, 1-24.	1.3	90
31	p53 functions in the incorporation step in DNA base excision repair in mouse liver mitochondria. Oncogene, 2004, 23, 6559-6568.	2.6	89
32	Mitochondrial DNA, base excision repair and neurodegeneration. DNA Repair, 2008, 7, 1098-1109.	1.3	89
33	No evidence of mitochondrial respiratory dysfunction in OGG1-null mice deficient in removal of 8-oxodeoxyguanine from mitochondrial DNA. Free Radical Biology and Medicine, 2005, 38, 737-745.	1.3	80
34	Formation and repair of oxidative damage in the mitochondrial DNA. Mitochondrion, 2014, 17, 164-181.	1.6	80
35	The C-terminal $\hat{A}O$ helix of human Ogg1 is essential for 8-oxoguanine DNA glycosylase activity: the mitochondrial \hat{A} -Ogg1 lacks this domain and does not have glycosylase activity. Nucleic Acids Research, 2004, 32, 5596-5608.	6.5	77
36	Oxidized guanine lesions and hOgg1 activity in lung cancer. Oncogene, 2005, 24, 4496-4508.	2.6	76

#	Article	IF	CITATIONS
37	Localization of mitochondrial DNA base excision repair to an inner membrane-associated particulate fraction. Nucleic Acids Research, 2005, 33, 3722-3732.	6.5	76
38	Unveiling Benznidazole's mechanism of action through overexpression of DNA repair proteins in <i>Trypanosoma cruzi</i> . Environmental and Molecular Mutagenesis, 2014, 55, 309-321.	0.9	70
39	Role of mitochondrial hOGG1 and aconitase in oxidant-induced lung epithelial cell apoptosis. Free Radical Biology and Medicine, 2009, 47, 750-759.	1.3	68
40	Phosphorylation of human oxoguanine DNA glycosylase (Â-OGG1) modulates its function. Nucleic Acids Research, 2005, 33, 3271-3282.	6.5	66
41	Accumulation of (5′S)-8,5′-cyclo-2′-deoxyadenosine in organs of Cockayne syndrome complementation group B gene knockout mice. DNA Repair, 2009, 8, 274-278.	1.3	66
42	Mitochondrial repair of 8-oxoguanine and changes with aging. Experimental Gerontology, 2002, 37, 1189-1196.	1.2	63
43	Compromised Incision of Oxidized Pyrimidines in Liver Mitochondria of Mice Deficient in NTH1 and OGG1 Glycosylases. Journal of Biological Chemistry, 2003, 278, 33701-33707.	1.6	63
44	Mechanisms of Manganese-Induced Neurotoxicity in Primary Neuronal Cultures: The Role of Manganese Speciation and Cell Type. Toxicological Sciences, 2011, 124, 414-423.	1.4	57
45	DNA base excision repair activities and pathway function in mitochondrial and cellular lysates from cells lacking mitochondrial DNA. Nucleic Acids Research, 2004, 32, 2181-2192.	6.5	53
46	Mitochondrial Toxin 3-Nitropropionic Acid Induces Cardiac and Neurotoxicity Differentially in Mice. American Journal of Pathology, 2001, 159, 1507-1520.	1.9	46
47	Cardiolipin is a key determinant for mtDNA stability and segregation during mitochondrial stress. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 587-598.	0.5	46
48	The Recombination Protein RAD52 Cooperates with the Excision Repair Protein OGG1 for the Repair of Oxidative Lesions in Mammalian Cells. Molecular and Cellular Biology, 2009, 29, 4441-4454.	1.1	42
49	Mitochondrial base excision repair assays. Methods, 2010, 51, 416-425.	1.9	42
50	Mitochondrial DNA damage associated with lipid peroxidation of the mitochondrial membrane induced by Fe2+-citrate. Anais Da Academia Brasileira De Ciencias, 2006, 78, 505-514.	0.3	41
51	DNA repair and mutagenesis in Werner syndrome. Environmental and Molecular Mutagenesis, 2001, 38, 227-234.	0.9	37
52	The role of mitochondrial DNA damage in the citotoxicity of reactive oxygen species. Journal of Bioenergetics and Biomembranes, 2011, 43, 25-29.	1.0	37
53	The mitochondrial theory of aging: Involvement of mitochondrial DNA damage and repair. International Review of Neurobiology, 2002, 53, 519-534.	0.9	35
54	Protective effects of l-carnitine and piracetam against mitochondrial permeability transition and PC3 cell necrosis induced by simvastatin. European Journal of Pharmacology, 2013, 701, 82-86.	1.7	33

#	Article	IF	CITATIONS
55	Role of mitochondrial dysfunction in the pathophysiology of DNA repair disorders. Cell Biology International, 2018, 42, 643-650.	1.4	28
56	XRCC1 haploinsufficiency in mice has little effect on aging, but adversely modifies exposure-dependent susceptibility. Nucleic Acids Research, 2011, 39, 7992-8004.	6.5	25
57	Oxidative stress and mitochondrial DNA repair: implications for NRTIs induced DNA damage. Mitochondrion, 2004, 4, 215-222.	1.6	24
58	DNA base excision repair activities in mouse models of Alzheimer's disease. Neurobiology of Aging, 2009, 30, 2080-2081.	1.5	24
59	Lower mitochondrial DNA content but not increased mutagenesis associates with decreased base excision repair activity in brains of AD subjects. Neurobiology of Aging, 2019, 73, 161-170.	1.5	23
60	Metabolism, Genomics, and DNA Repair in the Mouse Aging Liver. Current Gerontology and Geriatrics Research, 2011, 2011, 1-15.	1.6	21
61	Lack of XPC leads to a shift between respiratory complexes I and II but sensitizes cells to mitochondrial stress. Scientific Reports, 2017, 7, 155.	1.6	19
62	Enzymology of mitochondrial DNA repair. The Enzymes, 2019, 45, 257-287.	0.7	19
63	Effects of the melanin precursor 5,6-dihydroxy-indole-2-carboxylic acid (DHICA) on DNA damage and repair in the presence of reactive oxygen species. Archives of Biochemistry and Biophysics, 2014, 557, 55-64.	1.4	16
64	ExoMeg1: a new exonuclease from metagenomic library. Scientific Reports, 2016, 6, 19712.	1.6	16
65	XPC deficiency is related to APE1 and OGG1 expression and function. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2016, 784-785, 25-33.	0.4	16
66	Surface modification by argon plasma treatment improves antioxidant defense ability of CHO-k1 cells on titanium surfaces. Toxicology in Vitro, 2014, 28, 381-387.	1.1	15
67	Sustained kidney biochemical derangement in treated experimental diabetes: a clue to metabolic memory. Scientific Reports, 2017, 7, 40544.	1.6	13
68	Mechanism of tetrahydroxy-1,4-quinone cytotoxicity: Involvement of Ca22+ and H2O2 in the impairment of DNA replication and mitochondrial function. Free Radical Biology and Medicine, 1996, 20, 657-666.	1.3	11
69	Respiratory and TCA cycle activities affect S. cerevisiae lifespan, response to caloric restriction and mtDNA stability. Journal of Bioenergetics and Biomembranes, 2011, 43, 483-491.	1.0	10
70	p53â€Dependent and p53â€Independent Responses of Cells Challenged by Photosensitization. Photochemistry and Photobiology, 2019, 95, 355-363.	1.3	10
71	NEK5 interacts with LonP1 and its kinase activity is essential for the regulation of mitochondrial functions and mtDNA maintenance. FEBS Open Bio, 2021, 11, 546-563.	1.0	10
72	Base excision repair activities differ in human lung cancer cells and corresponding normal controls. Anticancer Research, 2010, 30, 4963-71.	0.5	10

#	Article	IF	CITATIONS
73	Mitochondrial helicases and mitochondrial genome maintenance. Mechanisms of Ageing and Development, 2010, 131, 503-510.	2.2	9
74	DNA Repair and the Accumulation of Oxidatively Damaged DNA Are Affected by Fruit Intake in Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2010, 65A, 1300-1311.	1.7	9
75	Opposing action of NCoR1 and PGC- $1\hat{l}\pm$ in mitochondrial redox homeostasis. Free Radical Biology and Medicine, 2019, 143, 203-208.	1.3	9
76	Deletion of OGG1 Results in a Differential Signature of Oxidized Purine Base Damage in mtDNA Regions. International Journal of Molecular Sciences, 2019, 20, 3302.	1.8	8
77	The Many Roles Mitochondria Play in Mammalian Aging. Antioxidants and Redox Signaling, 2022, 36, 824-843.	2.5	5
78	Mitochondria and aging. Mechanisms of Ageing and Development, 2010, 131, 449-450.	2.2	3
79	Effects of post mortem interval and gender in DNA base excision repair activities in rat brains. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2015, 776, 48-53.	0.4	3
80	PPRC1, but not PGC-1α, levels directly correlate with expression of mitochondrial proteins in human dermal fibroblasts. Genetics and Molecular Biology, 2020, 43, e20190083.	0.6	3
81	Manganese-Induced Neurotoxicity through Impairment of Cross-Talk Pathways in Human Neuroblastoma Cell Line SH-SY5Y Differentiated with Retinoic Acid. Toxics, 2021, 9, 348.	1.6	3
82	Investigation of base excision repair gene variants in late-onset Alzheimer's disease. PLoS ONE, 2019, 14, e0221362.	1.1	2
83	Increased H2O2 levels and p53 stabilization lead to mitochondrial dysfunction in XPC-deficient cells. Carcinogenesis, 2021, 42, 1380-1389.	1.3	1
84	Where do we aspire to publish? A position paper on scientific communication in biochemistry and molecular biology. Brazilian Journal of Medical and Biological Research, 2019, 52, e8935.	0.7	1
85	Manganese-induced development neurotoxicity is mediated by chemical speciation and probably by mitochondrial impairment. Toxicology Letters, 2010, 196, S307.	0.4	0
86	DNA Repair in Mammalian Mitochondria., 2002,, 744-758.		0
87	Tutorial Estrutura e Estabilidade do DNA: animações interativas da estrutura tridimensional do DNA. Journal of Biochemistry Education, 0, 15, 75.	0.1	0