
Michael K Deyholos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9194730/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Overview of Databases and Bioinformatics Tools for Plant Antimicrobial Peptides. Current Protein and Peptide Science, 2022, 23, 6-19.	0.7	5
2	Mammalian Melatonin Agonist Pharmaceuticals Stimulate Rhomboid Proteins in Plants. Biomolecules, 2022, 12, 882.	1.8	0
3	Ectopic overexpression of a membraneâ€tethered transcription factor gene <i>NAC60</i> from oilseed rape positively modulates programmed cell death and ageâ€triggered leaf senescence. Plant Journal, 2021, 105, 600-618.	2.8	21
4	Organellomic data sets confirm a cryptic consensus on (unrooted) landâ€plant relationships and provide new insights into bryophyte molecular evolution. American Journal of Botany, 2020, 107, 91-115.	0.8	38
5	Impact of betacyanins on responses to ultraviolet radiation in <i>Amaranthus tricolor</i> L Journal of Plant Interactions, 2020, 15, 117-126.	1.0	5
6	A Rapeseed WRKY Transcription Factor Phosphorylated by CPK Modulates Cell Death and Leaf Senescence by Regulating the Expression of ROS and SA-Synthesis-Related Genes. Journal of Agricultural and Food Chemistry, 2020, 68, 7348-7359.	2.4	32
7	WRKY42 transcription factor positively regulates leaf senescence through modulating SA and ROS synthesis in <i>Arabidopsis thaliana</i> . Plant Journal, 2020, 104, 171-184.	2.8	73
8	A virusâ€induced geneâ€silencing system for functional genetics in a betalainic species, <i>Amaranthus tricolor</i> (Amaranthaceae). Applications in Plant Sciences, 2019, 7, e01221.	0.8	15
9	VvWRKY30, a grape WRKY transcription factor, plays a positive regulatory role under salinity stress. Plant Science, 2019, 280, 132-142.	1.7	104
10	Chromosomeâ€scale pseudomolecules refined by optical, physical and genetic maps in flax. Plant Journal, 2018, 95, 371-384.	2.8	119
11	A Novel NAC-Type Transcription Factor, NAC87, from Oilseed Rape Modulates Reactive Oxygen Species Accumulation and Cell Death. Plant and Cell Physiology, 2018, 59, 290-303.	1.5	46
12	Sucrose synthase gene expression analysis in the fibre nettle (Urtica dioica L.) cultivar "clone 13― Industrial Crops and Products, 2018, 123, 315-322.	2.5	13
13	Transcriptome Assembly of the Bast Fiber Crop, Ramie, Boehmeria nivea (L.) Gaud. (Urticaceae). Fibers, 2018, 6, 8.	1.8	3
14	Influence of flax fibre variety and year-to-year variability on composite properties. Industrial Crops and Products, 2017, 98, 1-9.	2.5	46
15	LTR-retrotransposons in plants: Engines of evolution. Gene, 2017, 626, 14-25.	1.0	177
16	Insights into the Evolution of Hydroxyproline-Rich Glycoproteins from 1000 Plant Transcriptomes. Plant Physiology, 2017, 174, 904-921.	2.3	62
17	Impact of Low-Intensity Pulsed Ultrasound on Transcript and Metabolite Abundance in <i>Saccharomyces cerevisiae</i> . Journal of Proteome Research, 2017, 16, 2975-2982.	1.8	7
18	RNASeq Analysis of the Shoot Apex of Flax (Linum usitatissimum) to Identify Phloem Fiber Specification Genes. Frontiers in Plant Science, 2016, 7, 950.	1.7	44

#	Article	IF	CITATIONS
19	RNA-seq Transcriptome Response of Flax (Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. sp. lini. Frontiers in Plant Science, 2016, 7, 1766.	1.7	67
20	Nutrient foraging behaviour of four coâ€occurring perennial grassland plant species alone does not predict behaviour with neighbours. Functional Ecology, 2016, 30, 420-430.	1.7	36
21	Diversity of ABC transporter genes across the plant kingdom and their potential utility in biotechnology. BMC Biotechnology, 2016, 16, 47.	1.7	91
22	Ty1-copia elements reveal diverse insertion sites linked to polymorphisms among flax (Linum) Tj ETQq0 0 0 rgBT	/Oyerlock 1.2	10 Tf 50 622
23	Functional characterization of NAC55 transcription factor from oilseed rape (Brassica napus L.) as a novel transcriptional activator modulating reactive oxygen species accumulation and cell death. Plant Molecular Biology, 2016, 92, 89-104.	2.0	39
24	Wild Panax vietnamensis and Panax stipuleanatus markedly increase the genetic diversity of Panax notoginseng (Araliaceae) revealed by start codon targeted (SCoT) markers and ITS DNA barcode. Biochemical Systematics and Ecology, 2016, 66, 37-42.	0.6	11
25	Optimal fertilizer application for Panax notoginseng and effect of soil water on root rot disease and saponin contents. Journal of Ginseng Research, 2016, 40, 38-46.	3.0	52
26	Development of Microsatellite Markers Derived from Expressed Sequence Tags of Polyporales for Genetic Diversity Analysis of Endangered <i>Polyporus umbellatus</i> . BioMed Research International, 2015, 2015, 1-11.	0.9	3
27	Calcium Mobilization in Salicylic Acid-Induced Salvia miltiorrhiza Cell Cultures and Its Effect on the Accumulation of Rosmarinic Acid. Applied Biochemistry and Biotechnology, 2015, 175, 2689-2702.	1.4	21
28	The Amaranthin-Like Lectin (LuALL) Genes of Flax: a Unique Gene Family with Members Inducible by Defence Hormones. Plant Molecular Biology Reporter, 2015, 33, 731-741.	1.0	13
29	The evolutionary history of ferns inferred from 25 lowâ€copy nuclear genes. American Journal of Botany, 2015, 102, 1089-1107.	0.8	157
30	Wild soybean roots depend on specific transcription factors and oxidation reduction related genesin response to alkaline stress. Functional and Integrative Genomics, 2015, 15, 651-660.	1.4	51
31	Elucidating steroid alkaloid biosynthesis in <i>Veratrum californicum:</i> production of verazine in Sf9 cells. Plant Journal, 2015, 82, 991-1003.	2.8	62
32	Multiple Polyploidy Events in the Early Radiation of Nodulating and Nonnodulating Legumes. Molecular Biology and Evolution, 2015, 32, 193-210.	3.5	223
33	A Plant-Produced Bacteriophage Tailspike Protein for the Control of Salmonella. Frontiers in Plant Science, 2015, 6, 1221.	1.7	14
34	Differential Expression of miRNAs in Brassica napus Root following Infection with Plasmodiophora brassicae. PLoS ONE, 2014, 9, e86648.	1.1	50
35	Chitinase-Like (CTL) and Cellulose Synthase (CESA) Gene Expression in Gelatinous-Type Cellulosic Walls of Flax (Linum usitatissimum L.) Bast Fibers. PLoS ONE, 2014, 9, e97949.	1.1	59
36	Identification and functional analysis of mitogen-activated protein kinase kinase kinase (MAPKKK) genes in canola (Brassica napus L.). Journal of Experimental Botany, 2014, 65, 2171-2188.	2.4	70

#	Article	IF	CITATIONS
37	Data access for the 1,000 Plants (1KP) project. GigaScience, 2014, 3, 17.	3.3	582
38	Phylogenetic pinpointing of a paleopolyploidy event within the flax genus (Linum) using transcriptomics. Annals of Botany, 2014, 113, 753-761.	1.4	47
39	Phylotranscriptomic analysis of the origin and early diversification of land plants. Proceedings of the United States of America, 2014, 111, E4859-68.	3.3	1,123
40	Engineering bast fiber feedstocks for use in composite materials. Biocatalysis and Agricultural Biotechnology, 2014, 3, 53-57.	1.5	18
41	Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns. Proceedings of the United States of America, 2014, 111, 6672-6677.	3.3	146
42	Pectinmethylesterases (PME) and Pectinmethylesterase Inhibitors (PMEI) Enriched during Phloem Fiber Development in Flax (Linum usitatissimum). PLoS ONE, 2014, 9, e105386.	1.1	16
43	LuFLA1PRO and LuBGAL1PRO promote gene expression in the phloem fibres of flax (Linum) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 Tf.
44	The genome of flax (<i>Linum usitatissimum</i>) assembled <i>de novo</i> from short shotgun sequence reads. Plant Journal, 2012, 72, 461-473.	2.8	415
45	Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance. Biochemical and Biophysical Research Communications, 2012, 426, 273-279.	1.0	69
46	Evaluating Methods for Isolating Total RNA and Predicting the Success of Sequencing Phylogenetically Diverse Plant Transcriptomes. PLoS ONE, 2012, 7, e50226.	1.1	172
47	Plant Fiber Formation: State of the Art, Recent and Expected Progress, and Open Questions. Critical Reviews in Plant Sciences, 2012, 31, 201-228.	2.7	132
48	Modeling the Yew Tree Tubulin and a Comparison of its Interaction with Paclitaxel to Human Tubulin. Pharmaceutical Research, 2012, 29, 3007-3021.	1.7	20
49	Two Wheat (Triticum aestivum) Pathogenesis-Related 10 (PR-10) Transcripts with Distinct Patterns of Abundance in Different Organs. Molecular Biotechnology, 2012, 51, 103-108.	1.3	11
50	Development of Cellulosic Secondary Walls in Flax Fibers Requires β-Galactosidase Â. Plant Physiology, 2011, 156, 1351-1363.	2.3	114
51	Effects of plant growth regulator treatments on stem vascular tissue development in linseed (Linum) Tj ETQq1 1 C).784314 (2.5	rgBT /Overlo
52	PELPK1 (At5g09530) contains a unique pentapeptide repeat and is a positive regulator of germination in Arabidopsis thaliana. Plant Cell Reports, 2011, 30, 1735-1745.	2.8	20
53	Transcriptome analysis of secondary-wall-enriched seed coat tissues of canola (Brassica napus L.). Plant Cell Reports, 2010, 29, 327-342.	2.8	28
54	Exploration of inhibitors for diaminopimelate aminotransferase. Bioorganic and Medicinal Chemistry, 2010, 18, 2141-2151.	1.4	32

MICHAEL K DEYHOLOS

#	Article	IF	CITATIONS
55	Making the most of drought and salinity transcriptomics. Plant, Cell and Environment, 2010, 33, 648-654.	2.8	113
56	Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Molecular Biology, 2009, 69, 91-105.	2.0	554
57	Analysis of Arabidopsis arginase gene transcription patterns indicates specific biological functions for recently diverged paralogs. Plant Molecular Biology, 2008, 67, 429-440.	2.0	45
58	Towards identifying <i>Brassica</i> proteins involved in mediating resistance to <i>Leptosphaeria maculans</i> : A proteomicsâ€based approach. Proteomics, 2008, 8, 3516-3535.	1.3	30
59	Proteome-level changes in the roots of Brassica napus as a result of Plasmodiophora brassicae infection. Plant Science, 2008, 174, 97-115.	1.7	82
60	Microarray Analysis of Developing Flax Hypocotyls Identifies Novel Transcripts Correlated with Specific Stages of Phloem Fibre Differentiation. Annals of Botany, 2008, 102, 317-330.	1.4	48
61	High-Throughput, High-Sensitivity Analysis of Gene Expression in Arabidopsis. Plant Physiology, 2007, 144, 1256-1266.	2.3	13
62	Transcriptional profiling of canola (Brassica napus L.) responses to the fungal pathogen Sclerotinia sclerotiorum. Plant Science, 2007, 173, 156-171.	1.7	76
63	Crystal Structure of Il-Diaminopimelate Aminotransferase from Arabidopsis thaliana: A Recently Discovered Enzyme in the Biosynthesis of I-Lysine by Plants and Chlamydia. Journal of Molecular Biology, 2007, 371, 685-702.	2.0	42
64	Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. Journal of Experimental Botany, 2007, 58, 3591-3607.	2.4	456
65	Transcriptional profiling of hexaploid wheat (Triticum aestivum L.) roots identifies novel, dehydration-responsive genes. Plant, Cell and Environment, 2007, 30, 630-645.	2.8	66
66	Microarray analysis of bast fibre producing tissues of Cannabis sativa identifies transcripts associated with conserved and specialised processes of secondary wall development. Functional Plant Biology, 2007, 34, 737.	1.1	22
67	Patterns of storage protein and triacylglycerol accumulation during loblolly pine somatic embryo maturation. Plant Cell, Tissue and Organ Culture, 2007, 88, 217-223.	1.2	25
68	Gene transcript and metabolite profiling of elicitor-induced opium poppy cell cultures reveals the coordinate regulation of primary and secondary metabolism. Planta, 2007, 225, 1085-1106.	1.6	98
69	A synthetic de-greening gene circuit provides a reporting system that is remotely detectable and has a re-set capacity. Plant Biotechnology Journal, 2006, 4, 605-622.	4.1	58
70	Vascular development: the long and winding road. Current Opinion in Plant Biology, 2006, 9, 48-54.	3.5	82
71	Temporal progression of gene expression responses to salt shock in maize roots. Plant Molecular Biology, 2003, 52, 873-891.	2.0	102
72	The sfr6 mutant of Arabidopsis is defective in transcriptional activation via CBF/DREB1 and DREB2 and shows sensitivity to osmotic stress. Plant Journal, 2003, 34, 395-406.	2.8	86

#	Article	IF	CITATIONS
73	Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Molecular Biology, 2002, 48, 551-573.	2.0	503
74	A genomics approach towards salt stress tolerance. Plant Physiology and Biochemistry, 2001, 39, 295-311.	2.8	176
75	Gene Expression Profiles during the Initial Phase of Salt Stress in Rice. Plant Cell, 2001, 13, 889-905.	3.1	850
76	Separable Whorl-Specific Expression and Negative Regulation by Enhancer Elements within the AGAMOUS Second Intron. Plant Cell, 2000, 12, 1799.	3.1	13