Andrew Flewitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9194306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Triboelectric nanogenerator-enabled fully self-powered instantaneous wireless sensor systems. Nano Energy, 2022, 92, 106770.	16.0	21
2	Electric-Field-Resonance-Based Wireless Triboelectric Nanogenerators and Sensors. ACS Applied Materials & Interfaces, 2022, 14, 794-804.	8.0	18
3	Plasma enhanced chemical vapor deposition of p-type Cu2O from metal organic precursors. Journal of Applied Physics, 2022, 131, .	2.5	2
4	Role of ALD Al ₂ O ₃ Surface Passivation on the Performance of p-Type Cu ₂ O Thin Film Transistors. ACS Applied Materials & Interfaces, 2021, 13, 4156-4164.	8.0	31
5	Effect of Plasma Treatment on Metal Oxide p–n Thin Film Diodes Fabricated at Room Temperature. Advanced Materials Interfaces, 2021, 8, 2100049.	3.7	3
6	Inkjet Printed Circuits with 2D Semiconductor Inks for Highâ€Performance Electronics. Advanced Electronic Materials, 2021, 7, 2100112.	5.1	46
7	Tail state mediated conduction in zinc tin oxide thinfilm phototransistors under below bandgap optical excitation. Scientific Reports, 2021, 11, 19016.	3.3	4
8	Conjunction of triboelectric nanogenerator with induction coils as wireless power sources and self-powered wireless sensors. Nature Communications, 2020, 11, 58.	12.8	114
9	Air Stable Indium-Gallium-Zinc-Oxide Diodes With a 6.4 GHz Extrinsic Cutoff Frequency Fabricated Using Adhesion Lithography. IEEE Electron Device Letters, 2020, 41, 175-178.	3.9	6
10	Compact Source-Gated Transistor Analog Circuits for Ubiquitous Sensors. IEEE Sensors Journal, 2020, 20, 14903-14913.	4.7	19
11	Control of grain orientation and its impact on carrier mobility in reactively sputtered Cu2O thin films. Thin Solid Films, 2020, 704, 138000.	1.8	10
12	Antiferromagnetism and pâ€ŧype conductivity of nonstoichiometric nickel oxide thin films. InformaÄnÃ- Materiály, 2020, 2, 769-774.	17.3	20
13	A novel split mode TFBAR device for quantitative measurements of prostate specific antigen in a small sample of whole blood. Nanoscale, 2020, 12, 9647-9652.	5.6	6
14	Novel Tunnelâ€Contactâ€Controlled IGZO Thinâ€Film Transistors with High Tolerance to Geometrical Variability. Advanced Materials, 2019, 31, e1902551.	21.0	33
15	Photoconductive laser spectroscopy as a method to enhance defect spectral signatures in amorphous oxide semiconductor thin-film transistors. Applied Physics Letters, 2019, 114, 011907.	3.3	3
16	A Model for the Hydrothermal Growth of Zinc Oxide Nanorods in a High Solution Concentration Regime. Journal of Nanoelectronics and Optoelectronics, 2019, 14, 1451-1460.	0.5	2
17	Carbon nanotube isolation layer enhancing in-liquid quality-factors of thin film bulk acoustic wave resonators for gravimetric sensing. Sensors and Actuators B: Chemical, 2018, 261, 398-407.	7.8	10
18	High-resistivity metal-oxide films through an interlayer of graphene grown directly on copper electrodes. Graphene Technology, 2018, 3, 11-18.	1.9	1

#	Article	IF	CITATIONS
19	Hafnium Nitride as High Acoustic Impedance Material for Fully Insulating Acoustic Reflectors. , 2018, , .		0
20	In vitro dissolution behavior of hydrogenated amorphous silicon thin-film transistors. Npj Materials Degradation, 2018, 2, .	5.8	0
21	Experimental verification of electrostatic boundary conditions in gate-patterned quantum devices. Journal Physics D: Applied Physics, 2018, 51, 244004.	2.8	6
22	Film bulk acoustic resonators (FBARs) as biosensors: A review. Biosensors and Bioelectronics, 2018, 116, 1-15.	10.1	66
23	Split resonances for simultaneous detection and control measurements in a single bulk acoustic wave (BAW) sensor. Nanoscale, 2018, 10, 14395-14399.	5.6	5
24	Zinc tin oxide thin film transistors produced by a high rate reactive sputtering: Effect of tin composition and annealing temperatures. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600470.	1.8	16
25	Gravimetric sensors operating at 1.1 GHz based on inclined c-axis ZnO grown on textured Al electrodes. Scientific Reports, 2017, 7, 1367.	3.3	15
26	(Invited) Instability Mechanisms in Amorphous Oxide Semiconductors Leading to a Threshold Voltage Shift in Thin Film Transistors. ECS Transactions, 2017, 79, 49-56.	0.5	0
27	Analysis of Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Bi-Layer Gate Dielectric Stacks Using Maxwell-Wagner Instability Model. ECS Transactions, 2017, 80, 347-356.	0.5	2
28	Highly stable amorphous zinc tin oxynitride thin film transistors under positive bias stress. Applied Physics Letters, 2017, 111, 122109.	3.3	10
29	The Origin of the High Off-State Current in p-Type Cu ₂ 0 Thin Film Transistors. IEEE Electron Device Letters, 2017, 38, 1394-1397.	3.9	22
30	Nanostructured plasmonic metapixels. Scientific Reports, 2017, 7, 7745.	3.3	22
31	Analysis of the Conduction Mechanism and Copper Vacancy Density in p-type Cu2O Thin Films. Scientific Reports, 2017, 7, 5766.	3.3	28
32	Spectroscopic ellipsometry characterization of ZnO:Sn thin films with various Sn composition deposited by remote-plasma reactive sputtering. Applied Surface Science, 2017, 421, 557-564.	6.1	22
33	Current and Emerging Technology for Continuous Glucose Monitoring. Sensors, 2017, 17, 182.	3.8	193
34	Scandium Aluminium Nitride-Based Film Bulk Acoustic Resonators. Proceedings (mdpi), 2017, 1, .	0.2	30
35	Effects of post-deposition vacuum annealing on film characteristics of p-type Cu2O and its impact on thin film transistor characteristics. Applied Physics Letters, 2016, 109, 173502.	3.3	38
36	Fabrication of nanostructured transmissive optical devices on ITO-glass with UV1116 photoresist using high-energy electron beam lithography. Nanotechnology, 2016, 27, 485301.	2.6	9

#	Article	IF	CITATIONS
37	A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under positive gate bias stress. Applied Physics Letters, 2016, 108, .	3.3	24
38	(Invited) Stability under Gate Bias Stressing of Amorphous Oxide Thin Film Transistors. ECS Transactions, 2016, 75, 179-187.	0.5	2
39	Self-assembled liquid crystalline nanotemplates and their incorporation in dye-sensitised solar cells. Electrochimica Acta, 2016, 222, 657-667.	5.2	9
40	Homologous binary mixtures and improved hole conduction of self-assembled discotic liquid crystals. Organic Electronics, 2016, 36, 35-44.	2.6	16
41	Design and modelling of solidly mounted resonators for low-cost particle sensing. Measurement Science and Technology, 2016, 27, 025101.	2.6	18
42	An Approach to Simultaneously Test Multiple Devices for High-Throughput Production of Thin-Film Electronics. Journal of Display Technology, 2016, 12, 240-246.	1.2	2
43	Hydrogenated Amorphous Silicon Thin-Film Transistors (a-Si:H TFTs). , 2016, , 887-909.		2
44	Room temperature sputtering of inclined c-axis ZnO for shear mode solidly mounted resonators. Applied Physics Letters, 2016, 108, 034103.	3.3	15
45	Optimisation of amorphous zinc tin oxide thin film transistors by remote-plasma reactive sputtering. Journal of Applied Physics, 2016, 120, .	2.5	37
46	Film bulk acoustic resonators integrated on arbitrary substrates using a polymer support layer. Scientific Reports, 2015, 5, 9510.	3.3	43
47	Effects of Ni Deposition on the Electrochemical Properties of CNT/Ni Electrode and Its Application for Glucose Sensing. Journal of Nanoscience and Nanotechnology, 2015, 15, 3196-3199.	0.9	5
48	The influence of acoustic reflectors on the temperature coefficient of frequency of solidly mounted resonators. , 2014, , .		5
49	On-chip temperature-compensated Love mode surface acoustic wave device for gravimetric sensing. Applied Physics Letters, 2014, 105, .	3.3	8
50	Engineering Schottky Contacts in Open-Air Fabricated Heterojunction Solar Cells to Enable High Performance and Ohmic Charge Transport. ACS Applied Materials & Interfaces, 2014, 6, 22192-22198.	8.0	25
51	A wide-range frequency tunable SMR-CMOS oscillator for gas sensing. , 2014, , .		1
52	Investigation of polymer deposition techniques on a Solidly Mounted Resonator arrays for vapour sensing. , 2014, , .		1
53	ZnO/AIN stacked BAW resonators with double resonance. , 2014, , .		0
54	A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under simultaneous negative gate bias and illumination. Journal of Applied Physics, 2014, 115, .	2.5	43

#	Article	IF	CITATIONS
55	Electrodeposited Cu2O ZnO Heterostructures With High Built-In Voltages For Photovoltaic Applications. Materials Research Society Symposia Proceedings, 2014, 1675, 27-32.	0.1	0
56	Label-free detection of human prostate-specific antigen (hPSA) using film bulk acoustic resonators (FBARs). Sensors and Actuators B: Chemical, 2014, 190, 946-953.	7.8	34
57	Seed layer controlled deposition of ZnO films with a tilted c-axis for shear mode resonators. , 2014, , .		2
58	Hydrogenated Amorphous Silicon Thin-Film Transistors (a-Si:H TFTs). , 2014, , 1-18.		2
59	Intrinsic photoluminescence from low temperature deposited zinc oxide thin films as a function of laser and thermal annealing. Journal Physics D: Applied Physics, 2013, 46, 095305.	2.8	38
60	DC current rectification using indium-gallium zinc oxide-based selfswitching diodes. , 2013, , .		0
61	Enzyme-free glucose biosensor based on low density CNT forest grown directly on a Si/SiO2 substrate. Sensors and Actuators B: Chemical, 2013, 178, 586-592.	7.8	55
62	Direct comparison of the gravimetric responsivities of ZnO-based FBARs and SMRs. Sensors and Actuators B: Chemical, 2013, 183, 136-143.	7.8	17
63	Characterization of the surface acoustic wave devices based on ZnO/nanocrystalline diamond structures. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1575-1583.	1.8	16
64	Enhancement of microfluidic efficiency with nanocrystalline diamond interlayer in the ZnO-based surface acoustic wave device. Microfluidics and Nanofluidics, 2013, 15, 377-386.	2.2	17
65	Sensors based on SAW and FBAR technologies. , 2013, , .		4
66	Deposition of Low Stress Amorphous Zinc Tin Oxide at Ambient Temperature Using a Remote Plasma Sputtering Process Suitable for Delicate Substrates. ECS Transactions, 2013, 50, 73-81.	0.5	1
67	Analysis of <i>amorphous</i> indium-gallium-zinc-oxide thin-film transistor contact metal using Pilling-Bedworth theory and a variable capacitance diode model. Applied Physics Letters, 2013, 102, .	3.3	24
68	Low attenuation of GHz Rayleigh-like surface acoustic waves in ZnO/GaAs systems immersed in liquid helium. Applied Physics Letters, 2013, 102, 043507.	3.3	3
69	Acoustic properties of carbon nanotube electrodes in BAW resonators. , 2013, , .		2
70	Highâ€density remote plasma sputtering of highâ€dielectricâ€constant amorphous hafnium oxide films. Physica Status Solidi (B): Basic Research, 2013, 250, 957-967.	1.5	25
71	Room-temperature remote-plasma sputtering of <i>c</i> axis oriented zinc oxide thin films. Journal of Applied Physics, 2012, 112, .	2.5	30
72	Surface acoustic waves in liquid helium for enhanced single-electron transport applications. , 2012, , .		0

#	Article	IF	CITATIONS
73	Interfacial recognition of human prostate-specific antigen by immobilized monoclonal antibody: effects of solution conditions and surface chemistry. Journal of the Royal Society Interface, 2012, 9, 2457-2467.	3.4	49
74	Microfluidics based on ZnO/nanocrystalline diamond surface acoustic wave devices. Biomicrofluidics, 2012, 6, 24105-2410511.	2.4	58
75	A Critical Review of Glucose Biosensors Based on Carbon Nanomaterials: Carbon Nanotubes and Graphene. Sensors, 2012, 12, 5996-6022.	3.8	451
76	Dual-mode thin film bulk acoustic wave resonators for parallel sensing of temperature and mass loading. Biosensors and Bioelectronics, 2012, 38, 369-374.	10.1	36
77	Film bulk acoustic resonator pressure sensor with self temperature reference. Journal of Micromechanics and Microengineering, 2012, 22, 125005.	2.6	27
78	Flexible Electronics: The Next Ubiquitous Platform. Proceedings of the IEEE, 2012, 100, 1486-1517.	21.3	822
79	Near-ultraviolet zinc oxide nanowire sensor using low temperature hydrothermal growth. Nanotechnology, 2012, 23, 344009.	2.6	32
80	Protein functionalized ZnO thin film bulk acoustic resonator as an odorant biosensor. Sensors and Actuators B: Chemical, 2012, 163, 242-246.	7.8	35
81	Design of carbon nanotube fiber microelectrode for glucose biosensing. Journal of Chemical Technology and Biotechnology, 2012, 87, 256-262.	3.2	46
82	Hydrogenated Amorphous Silicon Thin Film Transistors (a Si:H TFTs). , 2012, , 627-646.		3
83	Guided propagation of surface acoustic waves and piezoelectric field enhancement in ZnO/GaAs systems. Journal of Applied Physics, 2011, 110, .	2.5	24
84	High frequency high-order Rayleigh modes in ZnO/GaAs. , 2011, , .		0
85	High-kâ€^(k=30) amorphous hafnium oxide films from high rate room temperature deposition. Applied Physics Letters, 2011, 98, .	3.3	61
86	ZnO-Based FBAR resonators with carbon nanotube electrodes. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58, 2438-2445.	3.0	14
87	Interfacial Immobilization of Monoclonal Antibody and Detection of Human Prostate-Specific Antigen. Langmuir, 2011, 27, 7654-7662.	3.5	70
88	Deposition and characterisation of ultralow-stress ZnO thin films for application in FBAR-based gravimetric biosensors. International Journal of Nanomanufacturing, 2011, 7, 371.	0.3	7
89	Film bulk acoustic resonator nanosensors for multi-task sensing. International Journal of Nanomanufacturing, 2011, 7, 448.	0.3	2
90	Low temperature (<100°C) deposited P-type cuprous oxide thin films: Importance of controlled oxygen and deposition energy. Thin Solid Films, 2011, 520, 1278-1284.	1.8	51

#	Article	IF	CITATIONS
91	AlN-based BAW resonators with CNT electrodes for gravimetric biosensing. Sensors and Actuators B: Chemical, 2011, 160, 1386-1393.	7.8	42
92	High mobility, bottom gate, nanocrystalline silicon thin film transistors incorporating a nitrogenated incubation layer. Current Applied Physics, 2011, 11, 171-175.	2.4	13
93	Radio frequency magnetic field detection using piezoelectric coupled microcantilevers. Smart Materials and Structures, 2011, 20, 025016.	3.5	8
94	Solidly mounted resonators with carbon nanotube electrodes for biosensing applications. , 2011, , .		0
95	Nanoparticulate PdZn as a Novel Catalyst for ZnO Nanowire Growth. Nanoscale Research Letters, 2010, 5, 904-907.	5.7	5
96	Influence of process route on membrane profile and Q-factor of an acoustic resonator sensor. Procedia Engineering, 2010, 5, 1388-1391.	1.2	0
97	Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review. Sensors and Actuators B: Chemical, 2010, 143, 606-619.	7.8	353
98	Nanocrystalline Silicon Thin Films Fabricated at 80°C by Using Electron Cyclotron Resonance Chemical Vapor Deposition. Plasma Science and Technology, 2010, 12, 608-613.	1.5	3
99	Fabrication of high-Q film bulk acoustic resonator (FBAR) filters with carbon nanotube (CNT) electrodes. , 2010, , .		2
100	Ultrafast sputtered ZnO thin films with high k <inf>T</inf> for acoustic wave device applications. , 2010, , .		6
101	Deep reactive ion etching as a tool for nanostructure fabrication. Journal of Vacuum Science & Technology B, 2009, 27, 1520-1526.	1.3	119
102	Microfluidic pumps employing surface acoustic waves generated in ZnO thin films. Journal of Applied Physics, 2009, 105, .	2.5	74
103	Quantitative Investigation of the Factors Affecting the Hydrothermal Growth of Zinc Oxide Nanowires. Materials Research Society Symposia Proceedings, 2009, 1174, 160.	0.1	4
104	Stability of thin film transistors incorporating a zinc oxide or indium zinc oxide channel deposited by a high rate sputtering process. Semiconductor Science and Technology, 2009, 24, 085002.	2.0	57
105	Surface acoustic wave induced streaming and pumping in 128° Y-cut LiNbO ₃ for microfluidic applications. Journal of Micromechanics and Microengineering, 2009, 19, 035016.	2.6	65
106	ZnO Thin Film Surface Acoustic Wave based Lab-on-a-Chip. Materials Research Society Symposia Proceedings, 2009, 1222, 1.	0.1	2
107	Corrections to "Zinc Oxide Nanostructures and High Electron Mobility Nanocomposite Thin Film Transistors―[Nov 08 3001-3011. IEEE Transactions on Electron Devices, 2009, 56, 156-156.	3.0	3
108	Moving-part-free microfluidic systems for lab-on-a-chip. Journal of Micromechanics and Microengineering, 2009, 19, 054001.	2.6	70

#	Article	IF	CITATIONS
109	Zinc Oxide Nanostructures and High Electron Mobility Nanocomposite Thin Film Transistors. IEEE Transactions on Electron Devices, 2008, 55, 3001-3011.	3.0	46
110	A shape memory microcage of TiNi/DLC films for biological applications. Journal of Micromechanics and Microengineering, 2008, 18, 035026.	2.6	29
111	Photoelectrochemical cell using dye sensitized zinc oxide nanowires grown on carbon fibers. Applied Physics Letters, 2008, 93, .	3.3	76
112	Numerical Simulation of the Growth of ZnO Nanostructures in a Tube Furnace by Physical Vapour Deposition. Materials Research Society Symposia Proceedings, 2008, 1074, 1.	0.1	3
113	ZnO film thickness effect on surface acoustic wave modes and acoustic streaming. Applied Physics Letters, 2008, 93, .	3.3	99
114	Synthesis of ZnO nanowires for thin film network transistors. Proceedings of SPIE, 2008, , .	0.8	8
115	Stress and Crystallization of Plasma Enhanced Chemical Vapour Deposition Nanocrystalline Silicon Films. Journal of Nanoscience and Nanotechnology, 2008, 8, 2693-2698.	0.9	5
116	In-Situ Observation of Transition Between Surface Relief and Wrinkling in Thin Film Shape Memory Alloys. Journal of Nanoscience and Nanotechnology, 2008, 8, 2588-2596.	0.9	3
117	Integrated ZnO Surface Acoustic Wave Microfluidic and Biosensor System. , 2007, , .		8
118	NANOCRYSTALLINE SILICON FILMS FOR THIN FILM TRANSISTOR AND OPTOELECTRONIC APPLICATIONS. , 2007, , 473-511.		1
119	Thin film shape memory alloys for optical sensing applications. Journal of Physics: Conference Series, 2007, 76, 012032.	0.4	10
120	Observation of protein-protein interaction by dielectric relaxation spectroscopy of protein solutions for biosensor application. Applied Physics Letters, 2007, 90, 123901.	3.3	15
121	Thermal and chemical vapor deposition of Si nanowires: Shape control, dispersion, and electrical properties. Journal of Applied Physics, 2007, 102, .	2.5	80
122	Two- and four-electrode, wide-bandwidth, dielectric spectrometer for conductive liquids: Theory, limitations, and experiment. Journal of Applied Physics, 2007, 102, .	2.5	31
123	ZnO film for application in surface acoustic wave device. Journal of Physics: Conference Series, 2007, 76, 012035.	0.4	44
124	DLC/TiNi microcage for biopsy applications. , 2007, , .		0
125	Microactuators of free-standing TiNiCu films. Smart Materials and Structures, 2007, 16, 2651-2657.	3.5	37
126	Ink-jet printing of carbon nanotube thin film transistors. Journal of Applied Physics, 2007, 102, .	2.5	189

#	Article	IF	CITATIONS
127	Deposition and characterization of sputtered ZnO films. Superlattices and Microstructures, 2007, 42, 89-93.	3.1	95
128	Scalable silicon nanowire photodetectors. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 38, 64-66.	2.7	48
129	Characterization of defect removal in hydrogenated and deuterated amorphous silicon thin film transistors. Journal of Non-Crystalline Solids, 2006, 352, 1700-1703.	3.1	17
130	Evolution of surface morphology in TiNiCu shape memory thin films. Applied Physics Letters, 2006, 89, 171922.	3.3	22
131	Variable RF capacitor based on a-Si:H (P-doped) multi-length cantilevers. Journal of Physics: Conference Series, 2006, 34, 788-793.	0.4	0
132	Development of thermal actuators with multi-locking positions. Journal of Physics: Conference Series, 2006, 34, 794-799.	0.4	3
133	Laser micromachining of sputtered DLC films. Applied Surface Science, 2006, 252, 4914-4918.	6.1	16
134	Modelling and fabrication of low operation temperature microcages with a polymer/metal/DLC trilayer structure. Sensors and Actuators A: Physical, 2006, 132, 346-353.	4.1	39
135	MEMS based digital variable capacitors with a high-k dielectric insulator. Sensors and Actuators A: Physical, 2006, 132, 139-146.	4.1	29
136	On the lower thickness boundary of sputtered TiNi films for shape memory application. Thin Solid Films, 2006, 515, 80-86.	1.8	102
137	Spark plasma sintering of TiNi nano-powders for biological application. Nanotechnology, 2006, 17, 5293-5298.	2.6	21
138	Effects of Process Conditions on Properties of Electroplated Ni Thin Films for Microsystem Applications. Journal of the Electrochemical Society, 2006, 153, D155.	2.9	78
139	<title>Large displacement spring-like electro-mechanical thermal actuators with insulator constraint beams</title> . , 2005, , .		1
140	Micromirror structure based on TiNi shape memory thin films. , 2005, , .		1
141	Uniformity Control of Ni Thin-Film Microstructures Deposited by Through-Mask Plating. Journal of the Electrochemical Society, 2005, 152, C36.	2.9	52
142	<title>TiNi shape memory alloy based micropumps</title> ., 2005, , .		0
143	Comparison of microtweezers based on three lateral thermal actuator configurations. Journal of Micromechanics and Microengineering, 2005, 15, 1294-1302.	2.6	60
144	Micromirror structure actuated by TiNi shape memory thin films. Journal of Micromechanics and Microengineering, 2005, 15, 1872-1877.	2.6	22

#	Article	IF	CITATIONS
145	Fabrication and characterization of diamond-like carbon/Ni bimorph normally closed microcages. Journal of Micromechanics and Microengineering, 2005, 15, 1406-1413.	2.6	41
146	Stability of fully deuterated amorphous silicon thin-film transistors. Applied Physics Letters, 2005, 86, 063513.	3.3	6
147	Absence of enhanced stability in fully deuterated amorphous silicon thin-film transistors. Journal of Applied Physics, 2005, 98, 054505.	2.5	9
148	Instability measurements in amorphous hydrogenated silicon using capacitance-voltage techniques. Applied Physics Letters, 2005, 86, 202110.	3.3	7
149	Three types of planar structure microspring electro-thermal actuators with insulating beam constraints. Journal of Micromechanics and Microengineering, 2005, 15, 1527-1535.	2.6	25
150	Kinetics of Field-Aided Nickel Induced Lateral Crystallisation of Hydrogenated Amorphous Silicon. , 2005, , 287-292.		0
151	Normally closed microgrippers using a highly stressed diamond-like carbon and Ni bimorph structure. Applied Physics Letters, 2004, 85, 5748-5750.	3.3	23
152	Biopsy applications of Ti50Ni41Cu9 shape memory films for wireless capsule endoscope. , 2004, , .		0
153	Absence of enhanced stability in deuterated amorphous silicon thin film transistors. Materials Research Society Symposia Proceedings, 2004, 808, 77.	0.1	Ο
154	Young's modulus of electroplated Ni thin film for MEMS applications. Materials Letters, 2004, 58, 2306-2309.	2.6	101
155	Development of an all-metal electrothermal actuator and its applications. , 2004, , .		10
156	a-Si:H TFT Thin Film and Substrate Materials. , 2004, , 15-78.		7
157	Dynamic Roughening of Tetrahedral Amorphous Carbon. Physical Review Letters, 2003, 91, 226104.	7.8	94
158	Physical and electrical properties of low temperature (<100 °C) SiO2 films deposited by electron cyclotron resonance plasmas. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 728-739.	2.1	13
159	Directional nickel-induced fielded aided lateral crystallization of amorphous silicon. Journal of Applied Physics, 2003, 94, 7535.	2.5	21
160	Directional Field Aided Lateral Crystallization of Amorphous Silicon Thin Films. Materials Research Society Symposia Proceedings, 2001, 664, 671.	0.1	4
161	High Quality Growth of SiO2 at 80° C by Electron Cyclotron Resonance (ECR) for Thin Film Transistors. Materials Research Society Symposia Proceedings, 2001, 685, 1.	0.1	1
162	Low temperature growth of silicon nitride by electron cyclotron resonance plasma enhanced chemical vapour deposition. Thin Solid Films, 2001, 383, 172-177.	1.8	36

#	Article	IF	CITATIONS
163	Hydrogenated Amorphous Silicon and Silicon Nitride Deposited at less than 100° C by ECR-PECVD for Thin Film Transistors. Materials Research Society Symposia Proceedings, 2000, 609, 2821.	0.1	0
164	Defect and disorder reduction by annealing in hydrogenated tetrahedral amorphous carbon. Diamond and Related Materials, 2000, 9, 765-770.	3.9	101
165	A carbon based bottom gate thin film transistor. Diamond and Related Materials, 2000, 9, 805-810.	3.9	17
166	Effect of work function and surface microstructure on field emission of tetrahedral amorphous carbon. Journal of Applied Physics, 2000, 88, 6002-6010.	2.5	111
167	Growth mechanism of hydrogenated amorphous silicon studied by in situ scanning tunneling microscopy. Journal of Applied Physics, 1999, 85, 8032-8039.	2.5	58
168	Flat panel displays. , 0, , 213-228.		0

Flat panel displays. , 0, , 213-228. 168