
Richard A Mathies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/919428/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization of Fluorescence Labeling of Trace Analytes: Application to Amino Acid Biosignature Detection with Pacific Blue. Analytical Chemistry, 2022, 94, 1240-1247.	3.2	7
2	Science Objectives for Flagship-Class Mission Concepts for the Search for Evidence of Life at Enceladus. Astrobiology, 2022, 22, 685-712.	1.5	21
3	Method for detecting and quantitating capture of organic molecules in hypervelocity impacts. MethodsX, 2021, 8, 101239.	0.7	5
4	Venus, an Astrobiology Target. Astrobiology, 2021, 21, 1163-1185.	1.5	38
5	On the Feasibility of Informative Biosignature Measurements Using an Enceladus Plume Organic Analyzer. Planetary Science Journal, 2021, 2, 163.	1.5	6
6	Quantitative evaluation of the feasibility of sampling the ice plumes at Enceladus for biomarkers of extraterrestrial life. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
7	Feasibility of Enceladus plume biosignature analysis: Successful capture of organic ice particles in hypervelocity impacts. Meteoritics and Planetary Science, 2020, 55, .	0.7	10
8	Fabrication of high-quality glass microfluidic devices for bioanalytical and space flight applications. MethodsX, 2020, 7, 101043.	0.7	12
9	Characterizing organic particle impacts on inert metal surfaces: Foundations for capturing organic molecules during hypervelocity transits of Enceladus plumes. Meteoritics and Planetary Science, 2020, 55, 465-479.	0.7	19
10	Monitoring transient cell-to-cell interactions in a multi-layered and multi-functional allergy-on-a-chip system. Lab on A Chip, 2019, 19, 1916-1921.	3.1	12
11	Rapid and Fully Microfluidic Ebola Virus Detection with CRISPR-Cas13a. ACS Sensors, 2019, 4, 1048-1054.	4.0	215
12	Resonance Raman Characterization of Tetracene Monomer and Nanocrystals: Excited State Lattice Distortions With Implications For Efficient Singlet Fission. Journal of Physical Chemistry A, 2019, 123, 3863-3875.	1.1	5
13	Difference Bands in Time-Resolved Femtosecond Stimulated Raman Spectra of Photoexcited Intermolecular Electron Transfer from Chloronaphthalene to Tetracyanoethylene. Journal of Physical Chemistry A, 2018, 122, 3594-3605.	1.1	18
14	Evidence for a vibrational phase-dependent isotope effect on the photochemistry of vision. Nature Chemistry, 2018, 10, 449-455.	6.6	75
15	Excited-state vibrational dynamics toward the polaron in methylammonium lead iodide perovskite. Nature Communications, 2018, 9, 2525.	5.8	129
16	Operation of pneumatically-actuated membrane-based microdevices for in situ analysis of extraterrestrial organic molecules after prolonged storage and in multiple orientations with respect to Earth's gravitational field. Sensors and Actuators B: Chemical, 2018, 272, 229-235.	4.0	8
17	Multiplexed efficient on-chip sample preparation and sensitive amplification-free detection of Ebola virus. Biosensors and Bioelectronics, 2017, 91, 489-496.	5.3	91
18	Critical Role of Methylammonium Librational Motion in Methylammonium Lead Iodide (CH ₃ NH ₃ PbI ₃) Perovskite Photochemistry. Nano Letters, 2017, 17, 4151-4157.	4.5	55

#	Article	IF	CITATIONS
19	Microfluidic System for Detection of Viral RNA in Blood Using a Barcode Fluorescence Reporter and a Photocleavable Capture Probe. Analytical Chemistry, 2017, 89, 12433-12440.	3.2	41
20	Feasibility of Detecting Bioorganic Compounds in Enceladus Plumes with the Enceladus Organic Analyzer. Astrobiology, 2017, 17, 902-912.	1.5	35
21	Nonâ€Bonded Interactions Drive the Subâ€Picosecond Bilin Photoisomerization in the P _{fr} State of Phytochrome Cph1. ChemPhysChem, 2016, 17, 369-374.	1.0	15
22	Femtosecond Stimulated Raman Spectroscopy. ChemPhysChem, 2016, 17, 1217-1217.	1.0	2
23	Femtosecond Stimulated Raman Spectroscopy. ChemPhysChem, 2016, 17, 1224-1251.	1.0	153
24	Forensic Typing of Single Cells Using Droplet Microfluidics. , 2016, , 71-94.		0
25	High-performance detection of somatic D-loop mutation in urothelial cell carcinoma patients by polymorphism ratio sequencing. Journal of Molecular Medicine, 2016, 94, 1015-1024.	1.7	7
26	End-to-end automated microfluidic platform for synthetic biology: from design to functional analysis. Journal of Biological Engineering, 2016, 10, 3.	2.0	54
27	Femtosecond Stimulated Raman Exposes the Role of Vibrational Coherence in Condensed-Phase Photoreactivity. Accounts of Chemical Research, 2016, 49, 616-625.	7.6	83
28	Pneumatically actuated microvalve circuits for programmable automation of chemical and biochemical analysis. Lab on A Chip, 2016, 16, 812-819.	3.1	59
29	Microfluidic hydrogel arrays for direct genotyping of clinical samples. Biosensors and Bioelectronics, 2016, 79, 371-378.	5.3	21
30	Optofluidic analysis system for amplification-free, direct detection of Ebola infection. Scientific Reports, 2015, 5, 14494.	1.6	104
31	Reactive and unreactive pathways in a photochemical ring opening reaction from 2D femtosecond stimulated Raman. Physical Chemistry Chemical Physics, 2015, 17, 9231-9240.	1.3	42
32	Microfluidic Linear Hydrogel Array for Multiplexed Single Nucleotide Polymorphism (SNP) Detection. Analytical Chemistry, 2015, 87, 3165-3170.	3.2	40
33	Single cell measurement of telomerase expression and splicing using microfluidic emulsion cultures. Nucleic Acids Research, 2015, 43, e104-e104.	6.5	3
34	Exciton Mobility in Organic Photovoltaic Heterojunctions from Femtosecond Stimulated Raman. Journal of Physical Chemistry Letters, 2015, 6, 2919-2923.	2.1	16
35	Molecular Orientation and Optical Properties of 3,3′-Diethylthiatricarbocyanine lodide Adsorbed to Gold Surfaces: Consequences for Surface-Enhanced Resonance Raman Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 9980-9987.	1.5	14
36	Supramolecular Ga ₄ L ₆ ^{12–} Cage Photosensitizes 1,3-Rearrangement of Encapsulated Guest via Photoinduced Electron Transfer. Journal of the American Chemical Society, 2015, 137, 10128-10131.	6.6	92

#	Article	IF	CITATIONS
37	A coherent picture of vision. Nature Chemistry, 2015, 7, 945-947.	6.6	32
38	Minimizing inhibition of PCR-STR typing using digital agarose droplet microfluidics. Forensic Science International: Genetics, 2015, 14, 203-209.	1.6	18
39	Integration of programmable microfluidics and on-chip fluorescence detection for biosensing applications. Biomicrofluidics, 2014, 8, 054111.	1.2	47
40	Single-Cell Forensic Short Tandem Repeat Typing within Microfluidic Droplets. Analytical Chemistry, 2014, 86, 703-712.	3.2	45
41	Photoactivated Bioconjugation Between <i>ortho</i> -Azidophenols and Anilines: A Facile Approach to Biomolecular Photopatterning. Journal of the American Chemical Society, 2014, 136, 12600-12606.	6.6	39
42	Characterization of a Conical Intersection in a Charge-Transfer Dimer with Two-Dimensional Time-Resolved Stimulated Raman Spectroscopy. Journal of Physical Chemistry A, 2014, 118, 4955-4965.	1.1	63
43	Chromophore Dynamics in the PYP Photocycle from Femtosecond Stimulated Raman Spectroscopy. Journal of Physical Chemistry B, 2014, 118, 659-667.	1.2	44
44	THE FIRST STEP IN VISION: VISUALIZING WAVEPACKET MOTION THROUGH A CONICAL INTERSECTION. , 2014, , .		0
45	Conical intersection dynamics in Rhodopsin and its analog isorhodopsin. , 2013, , .		0
46	Electron Transfer Dynamics of Triphenylamine Dyes Bound to TiO ₂ Nanoparticles from Femtosecond Stimulated Raman Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 6990-6997.	1.5	29
47	Single molecule quantitation and sequencing of rare translocations using microfluidic nested digital PCR. Nucleic Acids Research, 2013, 41, e159-e159.	6.5	33
48	Rapid fabrication of nickel molds for prototyping embossed plastic microfluidic devices. Lab on A Chip, 2013, 13, 1468.	3.1	42
49	Digitally programmable microfluidic automaton for multiscale combinatorial mixing and sample processing. Lab on A Chip, 2013, 13, 288-296.	3.1	50
50	Universal Microfluidic Automaton for Autonomous Sample Processing: Application to the Mars Organic Analyzer. Analytical Chemistry, 2013, 85, 7682-7688.	3.2	65
51	Low Frequency Resonant Impulsive Raman Modes Reveal Inversion Mechanism for Azobenzene. Journal of Physical Chemistry A, 2013, 117, 11472-11478.	1.1	22
52	Optimally shaped narrowband picosecond pulses for femtosecond stimulated Raman spectroscopy. Optics Express, 2013, 21, 21685.	1.7	26
53	Probing structural evolution along multidimensional reaction coordinates with femtosecond stimulated Raman spectroscopy. Physical Chemistry Chemical Physics, 2012, 14, 405-414.	1.3	65
54	Microfabricated Linear Hydrogel Microarray for Single-Nucleotide Polymorphism Detection. Analytical Chemistry, 2012, 84, 963-970.	3.2	16

#	Article	IF	CITATIONS
55	Structural Dynamics of a Noncovalent Charge Transfer Complex from Femtosecond Stimulated Raman Spectroscopy. Journal of Physical Chemistry B, 2012, 116, 10453-10460.	1.2	22
56	Conformational Homogeneity and Excited-State Isomerization Dynamics ofÂthe Bilin Chromophore in Phytochrome Cph1 from Resonance Raman Intensities. Biophysical Journal, 2012, 102, 709-717.	0.2	21
57	Lifting Gate Polydimethylsiloxane Microvalves and Pumps for Microfluidic Control. Analytical Chemistry, 2012, 84, 2067-2071.	3.2	94
58	Cellular Microfabrication: Observing Intercellular Interactions Using Lithographically-Defined DNA Capture Sequences. Langmuir, 2012, 28, 8120-8126.	1.6	20
59	Photoexcited structural dynamics of an azobenzene analog 4-nitro-4′-dimethylamino-azobenzene from femtosecond stimulated Raman. Physical Chemistry Chemical Physics, 2012, 14, 6298.	1.3	36
60	Detection of mitochondrial deoxyribonucleic acid alterations in urine from urothelial cell carcinoma patients. International Journal of Cancer, 2012, 131, 158-164.	2.3	23
61	Direct Attachment of Microbial Organisms to Material Surfaces Through Sequence‧pecific DNA Hybridization. Advanced Materials, 2012, 24, 2380-2385.	11.1	32
62	Analysis of Carbonaceous Biomarkers with the Mars Organic Analyzer Microchip Capillary Electrophoresis System: Carboxylic Acids. Astrobiology, 2011, 11, 519-528.	1.5	26
63	Singleâ€Cell Multiplex Gene Detection and Sequencing with Microfluidically Generated Agarose Emulsions. Angewandte Chemie - International Edition, 2011, 50, 390-395.	7.2	129
64	Conical intersection dynamics in a rhodopsin analog: 9-cis isorhodopsin. , 2011, , .		0
65	Analysis of carbonaceous biomarkers with the Mars Organic Analyzer microchip capillary electrophoresis system: Aldehydes and ketones. Electrophoresis, 2010, 31, 3642-3649.	1.3	30
66	Conical intersection dynamics of the primary photoisomerization event in vision. Nature, 2010, 467, 440-443.	13.7	779
67	Microvalve Enabled Digital Microfluidic Systems for High-Performance Biochemical and Genetic Analysis. Journal of the Association for Laboratory Automation, 2010, 15, 455-463.	2.8	35
68	Femtosecond Stimulated Raman Spectroscopy. , 2010, , .		0
69	Multichannel Capillary Electrophoresis Microdevice and Instrumentation for in Situ Planetary Analysis of Organic Molecules and Biomarkers. Analytical Chemistry, 2010, 82, 2372-2379.	3.2	63
70	High-Performance Single Cell Genetic Analysis Using Microfluidic Emulsion Generator Arrays. Analytical Chemistry, 2010, 82, 3183-3190.	3.2	210
71	A digital microfluidic platform for the automation of quantitative biomolecular assays. Lab on A Chip, 2010, 10, 685-691.	3.1	53
72	Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1784-1789.	3.3	190

#	Article	IF	CITATIONS
73	Integrated microfluidic systems for high-performance genetic analysis. Trends in Biotechnology, 2009, 27, 572-581.	4.9	125
74	Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy. Nature, 2009, 462, 200-204.	13.7	410
75	Femtosecond Time-Resolved Stimulated Raman Reveals the Birth of Bacteriorhodopsin's J and K Intermediates. Journal of the American Chemical Society, 2009, 131, 7592-7597.	6.6	73
76	Polymerase Chain Reaction-Capillary Electrophoresis Genetic Analysis Microdevice with In-Line Affinity Capture Sample Injection. Analytical Chemistry, 2009, 81, 1371-1377.	3.2	34
77	Enhanced Amine and Amino Acid Analysis Using Pacific Blue and the Mars Organic Analyzer Microchip Capillary Electrophoresis System. Analytical Chemistry, 2009, 81, 2537-2544.	3.2	87
78	Homogeneity of Phytochrome Cph1 Vibronic Absorption Revealed by Resonance Raman Intensity Analysis. Journal of the American Chemical Society, 2009, 131, 13946-13948.	6.6	38
79	Polycyclic Aromatic Hydrocarbon Analysis with the Mars Organic Analyzer Microchip Capillary Electrophoresis System. Analytical Chemistry, 2009, 81, 790-796.	3.2	61
80	Probing Interfacial Electron Transfer in Coumarin 343 Sensitized TiO ₂ Nanoparticles with Femtosecond Stimulated Raman. Journal of the American Chemical Society, 2009, 131, 15630-15632.	6.6	75
81	Direct Cell Surface Modification with DNA for the Capture of Primary Cells and the Investigation of Myotube Formation on Defined Patterns. Langmuir, 2009, 25, 6985-6991.	1.6	135
82	DNA-barcode directed capture and electrochemical metabolic analysis of single mammalian cells on a microelectrode array. Lab on A Chip, 2009, 9, 2010.	3.1	44
83	PMMA/PDMS valves and pumps for disposable microfluidics. Lab on A Chip, 2009, 9, 3088.	3.1	150
84	Capillary Electrophoresis Analysis of Organic Amines and Amino Acids in Saline and Acidic Samples Using the Mars Organic Analyzer. Astrobiology, 2009, 9, 823-831.	1.5	33
85	Immunomagnetic bead-based cell concentration microdevice for dilute pathogen detection. Biomedical Microdevices, 2008, 10, 909-917.	1.4	81
86	Femtosecond Ramanâ€induced Kerr effect spectroscopy. Journal of Raman Spectroscopy, 2008, 39, 1526-1530.	1.2	26
87	Resonance Raman Crossâ€Sections and Vibronic Analysis of Rhodamine 6G from Broadband Stimulated Raman Spectroscopy. ChemPhysChem, 2008, 9, 697-699.	1.0	222
88	High-Throughput Single Copy DNA Amplification and Cell Analysis in Engineered Nanoliter Droplets. Analytical Chemistry, 2008, 80, 3522-3529.	3.2	196
89	Integrated microfluidic bioprocessor for single-cell gene expression analysis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20173-20178.	3.3	216
90	Femtosecond Time-Resolved Optical and Raman Spectroscopy of Photoinduced Spin Crossover: Temporal Resolution of Low-to-High Spin Optical Switching. Journal of the American Chemical Society, 2008, 130, 14105-14107.	6.6	149

#	Article	IF	CITATIONS
91	Development of a Tunable Femtosecond Stimulated Raman Apparatus and Its Application to β-Carotene. Journal of Physical Chemistry B, 2008, 112, 4826-4832.	1.2	56
92	Origin of negative and dispersive features in anti-Stokes and resonance femtosecond stimulated Raman spectroscopy. Journal of Chemical Physics, 2008, 129, 064507.	1.2	71
93	Femtosecond broadband Stimulated Raman Spectroscopy. , 2008, , .		Ο
94	Polarization dependence of vibrational coupling signals in femtosecond stimulated Raman spectroscopy. Journal of Chemical Physics, 2007, 127, 124501.	1.2	21
95	Self-assembled cellular microarrays patterned using DNA barcodes. Lab on A Chip, 2007, 7, 1442.	3.1	59
96	Micropneumatic Digital Logic Structures for Integrated Microdevice Computation and Control. Journal of Microelectromechanical Systems, 2007, 16, 1378-1385.	1.7	57
97	Integrated Affinity Capture, Purification, and Capillary Electrophoresis Microdevice for Quantitative Double-Stranded DNA Analysis. Analytical Chemistry, 2007, 79, 8549-8556.	3.2	36
98	Inline Injection Microdevice for Attomole-Scale Sanger DNA Sequencing. Analytical Chemistry, 2007, 79, 4499-4506.	3.2	40
99	Organic amine biomarker detection in the Yungay region of the Atacama Desert with the Urey instrument. Journal of Geophysical Research, 2007, 112, .	3.3	49
100	Application of the Mars Organic Analyzer to Nucleobase and Amine Biomarker Detection. Astrobiology, 2006, 6, 824-837.	1.5	34
101	Development and multiplexed control of latching pneumatic valves using microfluidic logical structures. Lab on A Chip, 2006, 6, 623.	3.1	224
102	Microfluidic Serial Dilution Circuit. Analytical Chemistry, 2006, 78, 7522-7527.	3.2	60
103	Programmable Cell Adhesion Encoded by DNA Hybridization. Angewandte Chemie - International Edition, 2006, 45, 896-901.	7.2	165
104	Direct observation of the ultrafast intersystem crossing in tris(2,2′-bipyridine)ruthenium(II) using femtosecond stimulated Raman spectroscopy. Molecular Physics, 2006, 104, 1275-1282.	0.8	99
105	Nitric Oxide Binding to Prokaryotic Homologs of the Soluble Guanylate Cyclase β1 H-NOX Domain. Journal of Biological Chemistry, 2006, 281, 21892-21902.	1.6	66
106	Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman. Applied Physics Letters, 2006, 89, 121124.	1.5	40
107	Direct Observation of Anharmonic Coupling in the Time Domain with Femtosecond Stimulated Raman Scattering. Physical Review Letters, 2006, 96, 238303.	2.9	55
108	Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7240-7245.	3.3	252

#	Article	IF	CITATIONS
109	Development and evaluation of a microdevice for amino acid biomarker detection and analysis on Mars. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1041-1046.	3.3	257
110	An integrated microfluidic processor for single nucleotide polymorphism-based DNA computing. Lab on A Chip, 2005, 5, 1033.	3.1	59
111	Femtosecond Stimulated Raman Study of Excited-State Evolution in Bacteriorhodopsin. Journal of Physical Chemistry B, 2005, 109, 10449-10457.	1.2	129
112	Microfluidic Device for Electric Field-Driven Single-Cell Capture and Activation. Analytical Chemistry, 2005, 77, 6935-6941.	3.2	64
113	Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay. Journal of Chemical Physics, 2005, 122, 024505.	1.2	47
114	Structural Observation of the Primary Isomerization in Vision with Femtosecond-Stimulated Raman. Science, 2005, 310, 1006-1009.	6.0	600
115	Femtosecond Time-Resolved Stimulated Raman Spectroscopy of the S2(1Bu+) Excited State of β-Carotene. Journal of Physical Chemistry A, 2004, 108, 5921-5925.	1.1	109
116	Theory of femtosecond stimulated Raman spectroscopy. Journal of Chemical Physics, 2004, 121, 3632-3642.	1.2	140
117	Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods. Review of Scientific Instruments, 2004, 75, 4971-4980.	0.6	285
118	Chiral separation of fluorescamine-labeled amino acids using microfabricated capillary electrophoresis devices for extraterrestrial exploration. Journal of Chromatography A, 2003, 1021, 191-199.	1.8	95
119	Vibrational structure of the S2 (1Bu) excited state of diphenyloctatetraene observed by femtosecond stimulated Raman spectroscopy. Chemical Physics Letters, 2003, 382, 81-86.	1.2	33
120	Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices. Sensors and Actuators B: Chemical, 2003, 89, 315-323.	4.0	458
121	Femtosecond Broadband Stimulated Raman: A New Approach for High-Performance Vibrational Spectroscopy. Applied Spectroscopy, 2003, 57, 1317-1323.	1.2	121
122	Femtosecond Time-Resolved Stimulated Raman Spectroscopy:Â Application to the Ultrafast Internal Conversion in β-Caroteneâ€. Journal of Physical Chemistry A, 2003, 107, 8208-8214.	1.1	184
123	Polymorphism Ratio Sequencing: A New Approach for Single Nucleotide Polymorphism Discovery and Genotyping. Genome Research, 2003, 13, 287-293.	2.4	34
124	High throughput DNA sequencing with a microfabricated 96-lane capillary array electrophoresis bioprocessor. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 574-579.	3.3	251
125	Microfabricated 384-Lane Capillary Array Electrophoresis Bioanalyzer for Ultrahigh-Throughput Genetic Analysis. Analytical Chemistry, 2002, 74, 5076-5083.	3.2	271
126	Wavelength Dependent Cis-Trans Isomerization in Vision. Biochemistry, 2001, 40, 13774-13778.	1.2	163

#	Article	IF	CITATIONS
127	Fully integrated PCR-capillary electrophoresis microsystem for DNA analysis. Lab on A Chip, 2001, 1, 102.	3.1	270
128	Energy-Transfer Cassette Labeling for Capillary Array Electrophoresis Short Tandem Repeat DNA Fragment Sizing. Bioconjugate Chemistry, 2001, 12, 493-500.	1.8	22
129	Resonance Raman Structural Evidence that the Cis-to-Trans Isomerization in Rhodopsin Occurs in Femtoseconds. Journal of Physical Chemistry B, 2001, 105, 1240-1249.	1.2	56
130	Fluorescence and Resonance Raman Spectra of the Aqueous Solvated Electron. Journal of Physical Chemistry A, 2001, 105, 10952-10960.	1.1	62
131	Chromophore Structure in Lumirhodopsin and Metarhodopsin I by Time-Resolved Resonance Raman Microchip Spectroscopyâ€. Biochemistry, 2001, 40, 7929-7936.	1.2	56
132	High-Pressure Gel Loader for Capillary Array Electrophoresis Microchannel Plates. BioTechniques, 2001, 31, 1150-1154.	0.8	34
133	Genotyping Energy-Transfer-Cassette-labeled Short-Tandem-Repeat Amplicons with Capillary Array Electrophoresis Microchannel Plates. Clinical Chemistry, 2001, 47, 1614-1621.	1.5	41
134	High speed single nucleotide polymorphism typing of a hereditary haemochromatosis mutation with capillary array electrophoresis microplates. Electrophoresis, 2000, 21, 2352-2358.	1.3	50
135	Turn Geometry for Minimizing Band Broadening in Microfabricated Capillary Electrophoresis Channels. Analytical Chemistry, 2000, 72, 3030-3037.	3.2	172
136	High speed single nucleotide polymorphism typing of a hereditary haemochromatosis mutation with capillary array electrophoresis microplates. Electrophoresis, 2000, 21, 2352-2358.	1.3	3
137	Time-Resolved Ultraviolet Resonance Raman of Protein Structural Changes in The KI-Intermediate Of Bacteriorhodopsin. Laser Chemistry, 1999, 19, 165-168.	0.5	6
138	Ultra-high throughput rotary capillary array electrophoresis scanner for fluorescent DNA sequencing and analysis. Electrophoresis, 1999, 20, 1508-1517.	1.3	72
139	Picosecond time-resolved Raman system for studying photochemical reaction dynamics: application to the primary events in vision. Journal of Raman Spectroscopy, 1999, 30, 777-783.	1.2	35
140	Single-Molecule Detection of DNA Separations in Microfabricated Capillary Electrophoresis Chips Employing Focused Molecular Streams. Analytical Chemistry, 1999, 71, 5137-5145.	3.2	134
141	Optimization of High-Speed DNA Sequencing on Microfabricated Capillary Electrophoresis Channels. Analytical Chemistry, 1999, 71, 566-573.	3.2	221
142	Radial Capillary Array Electrophoresis Microplate and Scanner for High-Performance Nucleic Acid Analysis. Analytical Chemistry, 1999, 71, 5354-5361.	3.2	269
143	Ultra-high throughput rotary capillary array electrophoresis scanner for fluorescent DNA sequencing and analysis. , 1999, 20, 1508.		3
144	Photons, Femtoseconds and Dipolar Interactions: A Molecular Picture of the Primary Events in Vision. Novartis Foundation Symposium, 1999, 224, 70-101.	1.2	15

#	Article	IF	CITATIONS
145	Microfabrication Technology for the Production of Capillary Array Electrophoresis Chips. Biomedical Microdevices, 1998, 1, 7-26.	1.4	121
146	A three-wavelength labeling approach for DNA sequencing using energy transfer primers and capillary electrophoresis. Electrophoresis, 1998, 19, 1403-1414.	1.3	13
147	Vibrational Assignment of Torsional Normal Modes of Rhodopsin:Â Probing Excited-State Isomerization Dynamics along the Reactive C11C12Torsion Coordinate. Journal of Physical Chemistry B, 1998, 102, 2787-2806.	1.2	107
148	High-throughput genetic analysis using microfabricated 96-sample capillary array electrophoresis microplates. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 2256-2261.	3.3	255
149	High-Speed DNA Genotyping Using Microfabricated Capillary Array Electrophoresis Chips. Analytical Chemistry, 1997, 69, 2181-2186.	3.2	333
150	Ultraviolet Resonance Raman Examination of the Light-Induced Protein Structural Changes in Rhodopsin Activation. Biochemistry, 1997, 36, 13153-13159.	1.2	40
151	Multiplex dsDNA Fragment Sizing Using Dimeric Intercalation Dyes and Capillary Array Electrophoresis:Â Ionic Effects on the Stability and Electrophoretic Mobility of DNAâ^'Dye Complexes. Analytical Chemistry, 1997, 69, 1355-1363.	3.2	43
152	Microsatellite-based cancer detection using capillary array electrophoresis and energy-transfer fluorescent primers. Electrophoresis, 1997, 18, 1742-1749.	1.3	73
153	Femtosecond time-resolved spectroscopy of the primary photochemistry of phytochrome. Biospectroscopy, 1997, 3, 421-433.	0.4	53
154	Femtosecond time-resolved spectroscopy of the primary photochemistry of phytochrome. , 1997, 3, 421.		1
155	Retinal Analog Study of the Role of Steric Interactions in the Excited State Isomerization Dynamics of Rhodopsinâ€. Biochemistry, 1996, 35, 16230-16240.	1.2	92
156	Functional Integration of PCR Amplification and Capillary Electrophoresis in a Microfabricated DNA Analysis Device. Analytical Chemistry, 1996, 68, 4081-4086.	3.2	741
157	High-resolution capillary array electrophoretic sizing of multiplexed short tandem repeat loci using energy-transfer fluorescent primers. Electrophoresis, 1996, 17, 1485-1490.	1.3	55
158	DNA sequencing using a four-color confocal fluorescence capillary array scanner. Electrophoresis, 1996, 17, 1852-1859.	1.3	107
159	Energy transfer primers: A new fluorescence labeling paradigm for DNA sequencing and analysis. Nature Medicine, 1996, 2, 246-249.	15.2	101
160	Protein Dynamics in the Bacteriorhodopsin Photocycle:  A Nanosecond Step-Scan FTIR Investigation of the KL to L Transition. The Journal of Physical Chemistry, 1996, 100, 16026-16033.	2.9	70
161	Spontaneous Emission Study of the Femtosecond Isomerization Dynamics of Rhodopsin. The Journal of Physical Chemistry, 1996, 100, 14526-14532.	2.9	106
162	Femtosecond Spectroscopy of a 13-Demethylrhodopsin Visual Pigment Analogue:Â The Role of Nonbonded Interactions in the Isomerization Process. The Journal of Physical Chemistry, 1996, 100, 17388-17394.	2.9	65

#	Article	IF	CITATIONS
163	Fluorescence energy transfer dye-labeled primers for DNA sequencing and analysis Proceedings of the United States of America, 1995, 92, 4347-4351.	3.3	256
164	Ultrafast Spectroscopy of Rhodopsins — Photochemistry at Its Best!. Israel Journal of Chemistry, 1995, 35, 211-226.	1.0	104
165	Determination of Pericyclic Photochemical Reaction Dynamics with Resonance Raman Spectroscopy. The Journal of Physical Chemistry, 1994, 98, 5597-5606.	2.9	78
166	Excitedâ€state structure and photochemical ringâ€opening dynamics of 1,3,5â€cycloâ€octatriene from absolute resonance Raman intensities. Journal of Chemical Physics, 1994, 100, 2492-2504.	1.2	12
167	Vibrationally coherent photochemistry in the femtosecond primary event of vision. Science, 1994, 266, 422-424.	6.0	619
168	Excitedâ€ s tate structure and electronic dephasing time of Nile blue from absolute resonance Raman intensities. Journal of Chemical Physics, 1992, 96, 8037-8045.	1.2	81
169	Effective Rejection of Fluorescence Interference in Raman Spectroscopy Using a Shifted Excitation Difference Technique. Applied Spectroscopy, 1992, 46, 707-711.	1.2	284
170	Capillary array electrophoresis: an approach to high-speed, high-throughput DNA sequencing. Nature, 1992, 359, 167-169.	13.7	214
171	The first step in vision: femtosecond isomerization of rhodopsin. Science, 1991, 254, 412-415.	6.0	821
172	From Femtoseconds to Biology: Mechanism of Bacteriorhodopsin's Light-Driven Proton Pump. Annual Review of Biophysics and Biophysical Chemistry, 1991, 20, 491-518.	12.2	540
173	RESONANCE RAMAN SPECTRA OF BACTERIORHODOPSIN MUTANTS WITH SUBSTITUTIONS AT ASP-85, ASP-96, AND ARG-82. Photochemistry and Photobiology, 1991, 53, 341-346.	1.3	19
174	From femtoseconds to biology: Mechanism of bacteriorhodopsin's light-driven proton pump. Journal of Chemical Sciences, 1991, 103, 283-293.	0.7	9
175	ULTRAVIOLET RESONANCE RAMAN SPECTROSCOPY OF BACTERIORHODOPSIN. Photochemistry and Photobiology, 1990, 52, 605-607.	1.3	10
176	Resonance Raman analysis of the Pr and Pfr forms of phytochrome. Biochemistry, 1990, 29, 11141-11146.	1.2	101
177	Wave packet theory of dynamic absorption spectra in femtosecond pump–probe experiments. Journal of Chemical Physics, 1990, 92, 4012-4029.	1.2	265
178	A 77â€K cold stage for Raman microprobes and optical microscopy. Review of Scientific Instruments, 1989, 60, 2628-2630.	0.6	11
179	Classical theory for realâ€ŧime femtosecond probing of the NaI* photodissociation. Journal of Chemical Physics, 1989, 90, 6146-6150.	1.2	43
180	Excited state structure and femtosecond ringâ€opening dynamics of 1,3â€cyclohexadiene from absolute resonance Raman intensities. Journal of Chemical Physics, 1989, 90, 4274-4281.	1.2	92

#	Article	IF	CITATIONS
181	8,16―And 8,18â€methanobacteriorhodopsin. Synthesis and spectroscopy of 8,16―and 8,18â€methanoretinal and their interaction with bacterioopsin. Recueil Des Travaux Chimiques Des Pays-Bas, 1989, 108, 83-93.	0.0	19
182	Direct observation of the excitedâ€state cis–trans photoisomerization of bacteriorhodopsin: Multilevel line shape theory for femtosecond dynamic hole burning and its application. Journal of Chemical Physics, 1989, 90, 199-208.	1.2	104
183	Single-molecule fluorescence detection: autocorrelation criterion and experimental realization with phycoerythrin Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 4087-4091.	3.3	166
184	RESONANCE RAMAN SPECTRA OF THE P _r â€FORM OF PHYTOCHROME. Photochemistry and Photobiology, 1988, 48, 129-136.	1.3	52
185	Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin. Science, 1988, 240, 777-779.	6.0	539
186	Absolute resonance Raman intensities demonstrate that the spectral broadening induced by the βâ€ionone ring in retinal is homogeneous. Journal of Chemical Physics, 1986, 84, 633-640.	1.2	44
187	Simple interpretation of dephasing in absorption and resonance Raman theory. Journal of Chemical Physics, 1986, 85, 3744-3748.	1.2	31
188	Raman cross section measurements in the visible and ultraviolet using an integrating cavity: Application to benzene, cyclohexane, and cacodylate. Journal of Chemical Physics, 1986, 84, 2068-2074.	1.2	118
189	Quantitation of homogeneous and inhomogeneous broadening mechanisms in transâ€stilbene using absolute resonance Raman intensities. Journal of Chemical Physics, 1985, 83, 5000-5006.	1.2	76
190	Excitedâ€state torsional dynamics of cisâ€stilbene from resonance Raman intensities. Journal of Chemical Physics, 1984, 81, 1552-1558.	1.2	137
191	PRIMARY PHOTOCHEMISTRY OF BACTERIORHODOPSIN: COMPARISON OF FOURIER TRANSFORM INFRARED DIFFERENCE SPECTRA WITH RESONANCE RAMAN SPECTRA . Photochemistry and Photobiology, 1984, 40, 675-679.	1.3	56
192	Resonance Raman excitation profiles of bacteriorhodopsin. Journal of Chemical Physics, 1983, 79, 603-613.	1.2	144
193	Excited state geometry changes from preresonance Raman intensities: Isoprene and hexatriene. Journal of Chemical Physics, 1982, 77, 3857-3866.	1.2	203
194	Assignment and interpretation of hydrogen out-of-plane vibrations in the resonance Raman spectra of rhodopsin and bathorhodopsin. Biochemistry, 1982, 21, 384-393.	1.2	214
195	Raman spectroscopy with intensified vidicon detectors: A study of intact bovine lens proteins. Journal of Raman Spectroscopy, 1978, 7, 349-352.	1.2	50