
Binita Pathak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9193993/publications.pdf Version: 2024-02-01

ΒΙΝΙΤΑ ΡΑΤΗΛΚ

#	Article	IF	CITATIONS
1	Engineering Interfacial Processes at Mini-Micro-Nano Scales Using Sessile Droplet Architecture. Langmuir, 2018, 34, 8423-8442.	1.6	14
2	Controlling Self-Assembly and Topology at Micro–Nano Length Scales Using a Contact-Free Mixed Nanocolloid Droplet Architecture. Langmuir, 2018, 34, 5323-5333.	1.6	12
3	Dynamics of Droplet Break-Up. Energy, Environment, and Sustainability, 2018, , 369-401.	0.6	0
4	Phase separation and physico-chemical processes at microscopic and macroscopic levels in MWCNT laden polymer blends using a unique droplet based architecture. Physical Chemistry Chemical Physics, 2017, 19, 24961-24970.	1.3	2
5	Evaporation Dynamics of Mixed-Nanocolloidal Sessile Droplets. Langmuir, 2017, 33, 14123-14129.	1.6	21
6	Thermally induced phase separation in levitated polymer droplets. Physical Chemistry Chemical Physics, 2016, 18, 32477-32485.	1.3	3
7	Phenomenology of break-up modes in contact free externally heated nanoparticle laden fuel droplets. Physics of Fluids, 2016, 28, .	1.6	28
8	Modulation of Buckling Dynamics in Nanoparticle Laden Droplets Using External Heating. Langmuir, 2016, 32, 2591-2600.	1.6	9
9	Deformation pathways and breakup modes in acoustically levitated bicomponent droplets under external heating. Physical Review E, 2016, 93, 033103.	0.8	22
10	Comparison of Convective and Radiative Heating Modes on the Thermophysical Changes of a Cerium Nitrate Droplet. Journal of Thermal Science and Engineering Applications, 2016, 8, .	0.8	0
11	Experimental Study of Shape Transition in an Acoustically Levitated and Externally Heated Droplet. Journal of Heat Transfer, 2015, 137, .	1.2	8
12	Phenomenology and control of buckling dynamics in multicomponent colloidal droplets. Journal of Applied Physics, 2015, 117, .	1.1	13
13	Modeling of agglomeration inside a droplet with nanosuspensions in an acoustic field. International Journal of Heat and Mass Transfer, 2013, 59, 161-166.	2.5	16
14	Heat and mass transfer and chemical transformation in a cerium nitrate droplet. International Journal of Heat and Mass Transfer, 2013, 63, 301-312.	2.5	6