
## Sara Mahshid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9193967/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Fabrication and Characterization of Autonomously Selfâ€Healable and Stretchable Soft Microfluidics.<br>Advanced Sustainable Systems, 2022, 6, 2100074.                                                                   | 2.7 | 6         |
| 2  | Recent advancement in electrode materials and fabrication, microfluidic designs, and self-powered<br>systems for wearable non-invasive electrochemical glucose monitoring. Applied Materials Today, 2022,<br>26, 101350. | 2.3 | 15        |
| 3  | A non-enzymatic photoelectrochemical sensor based on Co-Pi modified one-dimensional titanium oxide embedded microscale reactor. Biosensors and Bioelectronics: X, 2022, 11, 100157.                                      | 0.9 | 0         |
| 4  | The potential application of electrochemical biosensors in the COVID-19 pandemic: A perspective on the rapid diagnostics of SARS-CoV-2. Biosensors and Bioelectronics, 2021, 176, 112905.                                | 5.3 | 109       |
| 5  | Plasmonic nanobowtiefluidic device for sensitive detection of glioma extracellular vesicles by Raman<br>spectrometry. Lab on A Chip, 2021, 21, 855-866.                                                                  | 3.1 | 36        |
| 6  | Gold Nano/Micro-Islands Overcome the Molecularly Imprinted Polymer Limitations to Achieve<br>Ultrasensitive Protein Detection. ACS Sensors, 2021, 6, 797-807.                                                            | 4.0 | 30        |
| 7  | Nanofluidics for Simultaneous Size and Charge Profiling of Extracellular Vesicles. Nano Letters, 2021, 21, 4895-4902.                                                                                                    | 4.5 | 11        |
| 8  | Nanobowtie Embedded Microfluidic Device for SERS Identification of Extracellular Vesicles from Synthetic Liposomes. , 2021, , .                                                                                          |     | 1         |
| 9  | Plasmonic-assisted electrochemical detection of hydrogen peroxide. , 2021, , .                                                                                                                                           |     | 0         |
| 10 | Multimodal electrochemical and SERS platform for chlorfenapyr detection. Applied Surface Science, 2021, 566, 150617.                                                                                                     | 3.1 | 11        |
| 11 | A nanostructured microfluidic device for plasmon-assisted electrochemical detection of hydrogen peroxide released from cancer cells. Nanoscale, 2021, 13, 14316-14329.                                                   | 2.8 | 31        |
| 12 | Are plasmonic optical biosensors ready for use in point-of-need applications?. Analyst, The, 2020, 145, 364-384.                                                                                                         | 1.7 | 123       |
| 13 | Tunable Dielectrophoretic Traps for Extra-Cellular Vesicles*. , 2020, , .                                                                                                                                                |     | 0         |
| 14 | An AgNP-deposited commercial electrochemistry test strip as a platform for urea detection. Scientific<br>Reports, 2020, 10, 9527.                                                                                        | 1.6 | 36        |
| 15 | Nanopattern-Assisted Direct Growth of Peony-like 3D MoS <sub>2</sub> /Au Composite for<br>Nonenzymatic Photoelectrochemical Sensing. ACS Applied Materials & Interfaces, 2020, 12,<br>7411-7422.                         | 4.0 | 49        |
| 16 | Microscale reactor embedded with Graphene/hierarchical gold nanostructures for electrochemical sensing: application to the determination of dopamine. Mikrochimica Acta, 2020, 187, 90.                                  | 2.5 | 22        |
| 17 | A Nanostructured Gold/Graphene Microfluidic Device for Direct and Plasmonic-Assisted Impedimetric<br>Detection of Bacteria. ACS Applied Materials & Interfaces, 2020, 12, 23298-23310.                                   | 4.0 | 50        |
| 18 | Hydrothermal Growth of Molybdenum Disulfide Composited with Electrodeposited Gold and Its<br>Photoelectrochemical Properties, ECS Meeting Abstracts, 2020, MA2020-01, 2156-2156                                          | 0.0 | 0         |

Sara Mahshid

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | (Invited) Nanosurface Fluidic Devices for Electrochemical Sensing and Biosensing. ECS Meeting Abstracts, 2020, MA2020-01, 2018-2018.                                                               | 0.0 | Ο         |
| 20 | Deposition of Gold Nano-Micro Islands on Electrochemically Reduced Graphene Oxide to Use in<br>Combination with Molecularly Imprinted Polymers. ECS Meeting Abstracts, 2020, MA2020-01, 2471-2471. | 0.0 | 0         |
| 21 | A Nanostructured Electrode for Photoelectrochemical Detection of Hydrogen Peroxide. ECS Meeting<br>Abstracts, 2020, MA2020-01, 2189-2189.                                                          | 0.0 | 0         |
| 22 | Photoelectrochemical Bioanalyte Sensor Based on Engineered One-Dimensional Nanostructured Oxide. ECS Meeting Abstracts, 2020, MA2020-01, 2081-2081.                                                | 0.0 | 0         |
| 23 | A review on recent advancements in electrochemical biosensing using carbonaceous nanomaterials.<br>Mikrochimica Acta, 2019, 186, 773.                                                              | 2.5 | 103       |
| 24 | Electrochemical sensors and biosensors based on the use of polyaniline and its nanocomposites: a review on recent advances. Mikrochimica Acta, 2019, 186, 465.                                     | 2.5 | 125       |
| 25 | Peptide-Mediated Electrochemical Steric Hindrance Assay for One-Step Detection of HIV Antibodies.<br>Analytical Chemistry, 2019, 91, 4943-4947.                                                    | 3.2 | 35        |
| 26 | Transverse dielectrophoretic-based DNA nanoscale confinement. Scientific Reports, 2018, 8, 5981.                                                                                                   | 1.6 | 23        |
| 27 | A Nanosurface Microfluidic Device for Capture and Detection of Bacteria. , 2018, , .                                                                                                               |     | 0         |
| 28 | A Nanosurface Microfluidic Device for Capture and Detection of Bacteria. , 2018, , .                                                                                                               |     | 1         |
| 29 | A nanofilter for fluidic devices by pillar-assisted self-assembly microparticles. Biomicrofluidics, 2018, 12, 064103.                                                                              | 1.2 | 9         |
| 30 | Pathogenic Bacteria Detection: A Hierarchical 3D Nanostructured Microfluidic Device for Sensitive Detection of Pathogenic Bacteria (Small 35/2018). Small, 2018, 14, 1870159.                      | 5.2 | 0         |
| 31 | A Hierarchical 3D Nanostructured Microfluidic Device for Sensitive Detection of Pathogenic Bacteria.<br>Small, 2018, 14, e1801893.                                                                 | 5.2 | 47        |
| 32 | Mechanistic Control of the Growth of Three-Dimensional Gold Sensors. Journal of Physical Chemistry C, 2016, 120, 21123-21132.                                                                      | 1.5 | 46        |
| 33 | Continuous Confinement Fluidics: Getting Lots of Molecules into Small Spaces with High Fidelity.<br>Macromolecules, 2016, 49, 2853-2859.                                                           | 2.2 | 23        |
| 34 | Development of a platform for single cell genomics using convex lens-induced confinement. Lab on A Chip, 2015, 15, 3013-3020.                                                                      | 3.1 | 27        |
| 35 | Experimental Evidence of Weak Excluded Volume Effects for Nanochannel Confined DNA. ACS Macro<br>Letters, 2015, 4, 759-763.                                                                        | 2.3 | 43        |
| 36 | Mixed confinement regimes during equilibrium confinement spectroscopy of DNA. Journal of Chemical<br>Physics, 2014, 140, 214901.                                                                   | 1.2 | 43        |

Sara Mahshid

| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Convex lens-induced nanoscale templating. Proceedings of the National Academy of Sciences of the<br>United States of America, 2014, 111, 13295-13300.                             | 3.3 | 38        |
| 38 | Electrodeposition and electrocatalytic properties of Pt/Ni–Co nanowires for non-enzymatic glucose detection. Journal of Alloys and Compounds, 2013, 554, 169-176.                 | 2.8 | 65        |
| 39 | Room temperature synthesis of highly crystalline TiO2 nanoparticles. Materials Letters, 2013, 92, 287-290.                                                                        | 1.3 | 22        |
| 40 | Sensitive determination of dopamine in the presence of uric acid and ascorbic acid using TiO2 nanotubes modified with Pd, Pt and Au nanoparticles. Analyst, The, 2011, 136, 2322. | 1.7 | 104       |
| 41 | Carbon-Pt Nanoparticles Modified TiO <sub>2</sub> Nanotubes for Simultaneous Detection of Dopamine and Uric Acid. Journal of Nanoscience and Nanotechnology, 2011, 11, 6668-6675. | 0.9 | 10        |
| 42 | Template-based electrodeposition of Pt/Ni nanowires and its catalytic activity towards glucose oxidation. Electrochimica Acta, 2011, 58, 551-555.                                 | 2.6 | 108       |
| 43 | The Pt/Ni Modified TiO2 Nanotubes and its Catalytic Activity Toward Glucose. ECS Transactions, 2011, 35, 63-69.                                                                   | 0.3 | 0         |
| 44 | Catalytic Activity of TiO2 Nanotubes Modified with Carbon and Pt Nanoparticles for Detection of Dopamine. ECS Transactions, 2011, 35, 53-62.                                      | 0.3 | 1         |
| 45 | A Well-Dispersed Pt/Ni/TiO <sub>2</sub> Nanotubes Modified Electrode as an Amperometric<br>Non-Enzymatic Glucose Biosensor. Sensor Letters, 2011, 9, 1598-1605.                   | 0.4 | 9         |
| 46 | EFFECT OF Si ANTIOXIDANT ON THE RATE OF OXIDATION OF CARBON IN MgO–C REFRACTORY. International Journal of Engineering, Transactions B: Applications, 2011, 24, 357-376.           | 0.6 | 5         |
| 47 | Self-Organized Titanium Oxide Nanotubes Prepared in Phosphate Electrolytes: Effect of Voltage and Fluorine Concentration. ECS Transactions, 2010, 28, 67-74.                      | 0.3 | 5         |
| 48 | Electrodeposition of Platinum Nanowires: Electrochemical Characterization. ECS Transactions, 2010, 28, 25-35.                                                                     | 0.3 | 3         |
| 49 | Mixed-phase TiO2 nanoparticles preparation using sol–gel method. Journal of Alloys and Compounds, 2009, 478, 586-589.                                                             | 2.8 | 83        |
| 50 | Effect of brookite presence on nanocrystalline anatase – rutile phase transformation.<br>International Journal of Nanotechnology, 2009, 6, 961.                                   | 0.1 | 7         |
| 51 | Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution.<br>Journal of Materials Processing Technology, 2007, 189, 296-300.               | 3.1 | 310       |
| 52 | Effect of Al Antioxidant on the Rate of Oxidation of Carbon in MgO?C Refractory. Journal of the<br>American Ceramic Society, 2007, 90, 509-515.                                   | 1.9 | 57        |
| 53 | Oxidation Mechanism of C in MgO-C Refractory Bricks. Journal of the American Ceramic Society, 2006,<br>89, 1308-1316.                                                             | 1.9 | 75        |
| 54 | Effect of ECAP on Physicochemical and Biological Properties of TiO2 Nanotubes Anodized on<br>Commercially Pure Titanium. Metals and Materials International, 0, , 1.              | 1.8 | 5         |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Enhanced Electrocatalytic Activity of TiO2 Nanotubes Modified with Pt and Pd Nanoparticles:<br>Electro-Oxidation of Dopamine, Uric Acid and Ascorbic Acid. International Journal of Theoretical and<br>Applied Nanotechnology, 0, , . | 0.0 | 2         |