Nisha S Sipes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9193875/publications.pdf Version: 2024-02-01

NICHA S SIDES

#	Article	IF	CITATIONS
1	Update on EPA's ToxCast Program: Providing High Throughput Decision Support Tools for Chemical Risk Management. Chemical Research in Toxicology, 2012, 25, 1287-1302.	3.3	410
2	Organophosphate Ester Flame Retardants: Are They a Regrettable Substitution for Polybrominated Diphenyl Ethers?. Environmental Science and Technology Letters, 2019, 6, 638-649.	8.7	343
3	httk : <i>R</i> Package for High-Throughput Toxicokinetics. Journal of Statistical Software, 2017, 79, 1-26.	3.7	256
4	Integrated Model of Chemical Perturbations of a Biological Pathway Using 18 <i>In Vitro</i> High-Throughput Screening Assays for the Estrogen Receptor. Toxicological Sciences, 2015, 148, 137-154.	3.1	251
5	Predictive Models of Prenatal Developmental Toxicity from ToxCast High-Throughput Screening Data. Toxicological Sciences, 2011, 124, 109-127.	3.1	186
6	Profiling 976 ToxCast Chemicals across 331 Enzymatic and Receptor Signaling Assays. Chemical Research in Toxicology, 2013, 26, 878-895.	3.3	162
7	In vitro to in vivo extrapolation for high throughput prioritization and decision making. Toxicology in Vitro, 2018, 47, 213-227.	2.4	162
8	An Intuitive Approach for Predicting Potential Human Health Risk with the Tox21 10k Library. Environmental Science & Technology, 2017, 51, 10786-10796.	10.0	120
9	<i>In Vitro</i> and Modelling Approaches to Risk Assessment from the U.S. Environmental Protection Agency ToxCast Programme. Basic and Clinical Pharmacology and Toxicology, 2014, 115, 69-76.	2.5	114
10	Environmental Impact on Vascular Development Predicted by High-Throughput Screening. Environmental Health Perspectives, 2011, 119, 1596-1603.	6.0	112
11	A hybrid gene selection approach to create the S1500+ targeted gene sets for use in high-throughput transcriptomics. PLoS ONE, 2018, 13, e0191105.	2.5	110
12	Comparative neurotoxicity screening in human iPSC-derived neural stem cells, neurons and astrocytes. Brain Research, 2016, 1638, 57-73.	2.2	108
13	Toxicity profiling of flame retardants in zebrafish embryos using a battery of assays for developmental toxicity, neurotoxicity, cardiotoxicity and hepatotoxicity toward human relevance. Neurotoxicology and Teratology, 2018, 70, 40-50.	2.4	104
14	Evaluating In Vitro-In Vivo Extrapolation of Toxicokinetics. Toxicological Sciences, 2018, 163, 152-169.	3.1	98
15	The Power of Resolution: Contextualized Understanding of Biological Responses to Liver Injury Chemicals Using High-throughput Transcriptomics and Benchmark Concentration Modeling. Toxicological Sciences, 2019, 169, 553-566.	3.1	54
16	Improving natural product research translation: From source to clinical trial. FASEB Journal, 2020, 34, 41-65.	0.5	45
17	Using the concordance of in vitro and in vivo data to evaluate extrapolation assumptions. PLoS ONE, 2019, 14, e0217564.	2.5	37
18	Screening for Developmental Neurotoxicity at the National Toxicology Program: The Future Is Here. Toxicological Sciences, 2019, 167, 6-14.	3.1	36

NISHA S SIPES

#	Article	IF	CITATIONS
19	IVIVE: Facilitating the Use of In Vitro Toxicity Data in Risk Assessment and Decision Making. Toxics, 2022, 10, 232.	3.7	35
20	Screening for neurotoxic potential of 15 flame retardants using freshwater planarians. Neurotoxicology and Teratology, 2019, 73, 54-66.	2.4	33
21	Predictive modeling of biological responses in the rat liver using in vitro Tox21 bioactivity: Benefits from high-throughput toxicokinetics. Computational Toxicology, 2021, 18, 100166.	3.3	30
22	Identifying Attributes That Influence <i>In Vitro</i> -to- <i>In Vivo</i> Concordance by Comparing <i>In Vivo</i> Tox21 Bioactivity Versus <i>In Vivo</i> DrugMatrix Transcriptomic Responses Across 130 Chemicals. Toxicological Sciences, 2019, 167, 157-171.	3.1	25
23	Leveraging human genetic and adverse outcome pathway (AOP) data to inform susceptibility in human health risk assessment. Mammalian Genome, 2018, 29, 190-204.	2.2	24
24	Profiling the Tox21 Chemical Collection for Acetylcholinesterase Inhibition. Environmental Health Perspectives, 2021, 129, 47008.	6.0	21
25	The Carcinogenome Project: <i>In Vitro</i> Gene Expression Profiling of Chemical Perturbations to Predict Long-Term Carcinogenicity. Environmental Health Perspectives, 2019, 127, 47002.	6.0	20
26	NAM-supported read-across: From case studies to regulatory guidance in safety assessment. ALTEX: Alternatives To Animal Experimentation, 2021, 38, 140-150.	1.5	19
27	Using Tox21 High-Throughput Screening Assays for the Evaluation of Botanical and Dietary Supplements. Applied in Vitro Toxicology, 2019, 5, 10-25.	1.1	15
28	Development and evaluation of a high throughput inhalation model for organic chemicals. Journal of Exposure Science and Environmental Epidemiology, 2020, 30, 866-877.	3.9	13
29	Benchmark Concentrations for Untargeted Metabolomics Versus Transcriptomics for Liver Injury Compounds in <i>In Vitro</i> Liver Models. Toxicological Sciences, 2021, 181, 175-186.	3.1	11
30	Channel Interactions and Robust Inference for Ratiometric β-Lactamase Assay Data: A Tox21 Library Analysis. ACS Sustainable Chemistry and Engineering, 2018, 6, 3233-3241.	6.7	1