Miki Fujita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9192803/publications.pdf Version: 2024-02-01

Μικι Ειμιτά

#	Article	IF	CITATIONS
1	Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant Journal, 2002, 31, 279-292.	5.7	1,697
2	Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 2006, 9, 436-442.	7.1	1,595
3	Isolation and Functional Analysis of Arabidopsis Stress-Inducible NAC Transcription Factors That Bind to a Drought-Responsive cis-Element in the early responsive to dehydration stress 1 Promoter[W]. Plant Cell, 2004, 16, 2481-2498.	6.6	1,329
4	Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant Journal, 2007, 51, 617-630.	5.7	996
5	A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant Journal, 2004, 39, 863-876.	5.7	877
6	ABA-mediated transcriptional regulation in response to osmotic stress in plants. Journal of Plant Research, 2011, 124, 509-525.	2.4	860
7	AREB1 Is a Transcription Activator of Novel ABRE-Dependent ABA Signaling That Enhances Drought Stress Tolerance in Arabidopsis Â. Plant Cell, 2005, 17, 3470-3488.	6.6	826
8	Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Current Opinion in Biotechnology, 2006, 17, 113-122.	6.6	683
9	Three SnRK2 Protein Kinases are the Main Positive Regulators of Abscisic Acid Signaling in Response to Water Stress in Arabidopsis. Plant and Cell Physiology, 2009, 50, 2123-2132.	3.1	599
10	<i>Arabidopsis</i> DREB2A-Interacting Proteins Function as RING E3 Ligases and Negatively Regulate Plant Drought Stress–Responsive Gene Expression. Plant Cell, 2008, 20, 1693-1707.	6.6	477
11	Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Functional and Integrative Genomics, 2002, 2, 282-291.	3.5	394
12	Metabolic Pathways Involved in Cold Acclimation Identified by Integrated Analysis of Metabolites and Transcripts Regulated by DREB1A and DREB2A Â Â. Plant Physiology, 2009, 150, 1972-1980.	4.8	315
13	STOP1 Regulates Multiple Genes That Protect Arabidopsis from Proton and Aluminum Toxicities Â. Plant Physiology, 2009, 150, 281-294.	4.8	283
14	Monitoring expression profiles ofArabidopsisgene expression during rehydration process after dehydration usingca. 7000 full-length cDNA microarray. Plant Journal, 2003, 34, 868-887.	5.7	263
15	The FOX hunting system: an alternative gain-of-function gene hunting technique. Plant Journal, 2006, 48, 974-985.	5.7	244
16	SNACâ€As, stressâ€responsive NAC transcription factors, mediate ABAâ€inducible leaf senescence. Plant Journal, 2015, 84, 1114-1123.	5.7	202
17	Toxicity of Free Proline Revealed in an Arabidopsis T-DNA-Tagged Mutant Deficient in Proline Dehydrogenase. Plant and Cell Physiology, 2003, 44, 541-548.	3.1	161
18	Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. Functional and Integrative Genomics, 2006, 6, 212-234.	3.5	137

Μικι Γυjita

#	Article	IF	CITATIONS
19	Systematic approaches to using the FOX hunting system to identify useful rice genes. Plant Journal, 2009, 57, 883-894.	5.7	121
20	STOP2 Activates Transcription of Several Genes for Al- and Low pH-Tolerance that Are Regulated by STOP1 in Arabidopsis. Molecular Plant, 2014, 7, 311-322.	8.3	120
21	Natural variation in a polyamine transporter determines paraquat tolerance in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6343-6347.	7.1	115
22	Identification of stress-tolerance-related transcription-factor genes via mini-scale Full-length cDNA Over-eXpressor (FOX) gene hunting system. Biochemical and Biophysical Research Communications, 2007, 364, 250-257.	2.1	112
23	Efficient Yeast One-/Two-Hybrid Screening Using a Library Composed Only of Transcription Factors in Arabidopsis thaliana. Plant and Cell Physiology, 2010, 51, 2145-2151.	3.1	104
24	A genome-wide gain-of-function analysis of rice genes using the FOX-hunting system. Plant Molecular Biology, 2007, 65, 357-371.	3.9	103
25	RIKEN Arabidopsis full-length (RAFL) cDNA and its applications for expression profiling under abiotic stress conditions. Journal of Experimental Botany, 2003, 55, 213-223.	4.8	94
26	Characterization of the Promoter Region of an Arabidopsis Gene for 9-cis-Epoxycarotenoid Dioxygenase Involved in Dehydration-Inducible Transcription. DNA Research, 2013, 20, 315-324.	3.4	93
27	CRISPR/Cas9-targeted mutagenesis of OsERA1 confers enhanced responses to abscisic acid and drought stress and increased primary root growth under nonstressed conditions in rice. PLoS ONE, 2020, 15, e0243376.	2.5	73
28	Identification of Polyamine Transporters in Plants: Paraquat Transport Provides Crucial Clues. Plant and Cell Physiology, 2014, 55, 855-861.	3.1	72
29	Interactions and Nuclear Import of the N and P Proteins of Sonchus Yellow Net Virus, a Plant Nucleorhabdovirus. Journal of Virology, 2001, 75, 9393-9406.	3.4	69
30	Expression Profiles of Arabidopsis Phospholipase A IIA Gene in Response to Biotic and Abiotic Stresses. Plant and Cell Physiology, 2003, 44, 1246-1252.	3.1	50
31	Interâ€tissue and interâ€organ signaling in drought stress response and phenotyping of drought tolerance. Plant Journal, 2022, 109, 342-358.	5.7	50
32	Overexpression of AtABCG25 enhances the abscisic acid signal in guard cells and improves plant water use efficiency. Plant Science, 2016, 251, 75-81.	3.6	45
33	High affinity promoter binding of STOP1 is essential for early expression of novel aluminum-induced resistance genes <i>GDH1</i> and <i>GDH2</i> in Arabidopsis. Journal of Experimental Botany, 2021, 72, 2769-2789.	4.8	28
34	RIPPS: A Plant Phenotyping System for Quantitative Evaluation of Growth Under Controlled Environmental Stress Conditions. Plant and Cell Physiology, 2018, 59, 2030-2038.	3.1	26
35	Extracellular Spermine Triggers a Rapid Intracellular Phosphatidic Acid Response in Arabidopsis, Involving PLDî´Activation and Stimulating Ion Flux. Frontiers in Plant Science, 2019, 10, 601.	3.6	19
36	Transcriptome analysis in abiotic stress conditions in higher plants. Topics in Current Genetics, 0, , 271-308.	0.7	16

Μικι Γυμιτά

#	Article	IF	CITATIONS
37	The genotype-dependent phenotypic landscape of quinoa in salt tolerance and key growth traits. DNA Research, 2020, 27, .	3.4	15
38	Casein kinase 2 α and β subunits inversely modulate ABA signal output in Arabidopsis protoplasts. Planta, 2018, 248, 571-578.	3.2	14
39	FOX-superroots of Lotus corniculatus, overexpressing Arabidopsis full-length cDNA, show stable variations in morphological traits. Journal of Plant Physiology, 2011, 168, 181-187.	3.5	13
40	Bromovirus Movement Protein Conditions for the Host Specificity of Virus Movement Through the Vascular System and Affects Pathogenicity in Cowpea. Molecular Plant-Microbe Interactions, 2000, 13, 1195-1203.	2.6	12
41	Transcription Factors Involved in the Crosstalk between Abiotic and Biotic Stress-Signaling Networks. , 0, , 43-58.		10
42	Polyamine Transport Systems in Plants. , 2015, , 179-185.		6