Muhannad T Suleiman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/919262/publications.pdf

Version: 2024-02-01

59 papers

1,128 citations

430754 18 h-index 414303 32 g-index

60 all docs

60 docs citations

60 times ranked

664 citing authors

#	Article	IF	CITATIONS
1	Mechanical Behavior of Sands Treated by Microbially Induced Carbonate Precipitation. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2016, 142, .	1.5	199
2	Pile Setup in Cohesive Soil. I: Experimental Investigation. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2013, 139, 199-209.	1.5	60
3	Isolation, differentiation and biodiversity of ureolytic bacteria of Qatari soil and their potential in microbially induced calcite precipitation (MICP) for soil stabilization. RSC Advances, 2018, 8, 5854-5863.	1.7	59
4	Development of Pervious Concrete Pile Ground-Improvement Alternative and Behavior under Vertical Loading. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2014, 140, 04014035.	1.5	56
5	Cyclic Lateral Load Response of Bridge Column-Foundation-Soil Systems in Freezing Conditions. Journal of Structural Engineering, 2006, 132, 1745-1754.	1.7	47
6	Effects of Seasonal Freezing on Bridge Column–Foundation–Soil Interaction and Their Implications. Earthquake Spectra, 2007, 23, 199-222.	1.6	46
7	Pile Setup in Cohesive Soil. II: Analytical Quantifications and Design Recommendations. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2013, 139, 210-222.	1.5	46
8	"Underlying―Causes for Settlement of Bridge Approach Pavement Systems. Journal of Performance of Constructed Facilities, 2007, 21, 273-282.	1.0	41
9	Enhancing the Axial Compression Response of Pervious Concrete Ground Improvement Piles Using Biogrouting. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2016, 142, .	1.5	41
10	Constitutive Model for High Density Polyethylene Material: Systematic Approach. Journal of Materials in Civil Engineering, 2004, 16, 511-515.	1.3	39
11	Current Design and Construction Practices of Bridge Pile Foundations with Emphasis on Implementation of LRFD. Journal of Bridge Engineering, 2010, 15, 749-758.	1.4	37
12	Interaction between Laterally Loaded Pile and Surrounding Soil. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2015, 141, .	1.5	33
13	Soil-Pile Interaction for a Small Diameter Pile Embedded in Granular Soil Subjected to Passive Loading. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2014, 140, .	1.5	30
14	Behavior and Soil–Structure Interaction of Pervious Concrete Ground-Improvement Piles under Lateral Loading. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2016, 142, .	1.5	30
15	Behavior of Slender Piles Subject to Free-Field Lateral Soil Movement. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2008, 134, 428-436.	1.5	25
16	Numerical Analysis of Geosynthetic-Rammed Aggregate Pier Supported Embankments., 2004,, 657.		23
17	Development and Use of High-Quality Databases of Deep Foundation Load Tests. Transportation Research Record, 2015, 2511, 27-36.	1.0	21
18	Load Transfer in Rammed Aggregate Piers. International Journal of Geomechanics, 2006, 6, 389-398.	1.3	19

#	Article	IF	CITATIONS
19	Behavior of Driven Ultrahigh-Performance Concrete H-Piles Subjected to Vertical and Lateral Loadings. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2010, 136, 1403-1413.	1.5	18
20	Introduction to PILOT Database and Establishment of LRFD Resistance Factors for the Construction Control of Driven Steel H-Piles. Journal of Bridge Engineering, 2011, 16, 728-738.	1.4	18
21	Subsurface Event Detection and Classification Using Wireless Signal Networks. Sensors, 2012, 12, 14862-14886.	2.1	17
22	Investigation of effects of temperature cycles on soil-concrete interface behavior using direct shear tests. Soils and Foundations, 2019, 59, 1213-1227.	1.3	17
23	LRFD Resistance Factors for Design of Driven H-Piles in Layered Soils. Journal of Bridge Engineering, 2011, 16, 739-748.	1.4	16
24	Installation Effects of Controlled Modulus Column Ground Improvement Piles on Surrounding Soil. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2016, 142, .	1.5	16
25	Geotechnical sensing using electromagnetic attenuation between radio transceivers. Smart Materials and Structures, 2012, 21, 125017.	1.8	15
26	Effect of Temperature and Radial Displacement Cycles on Soil–Concrete Interface Properties Using Modified Thermal Borehole Shear Test. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2018, 144, .	1.5	15
27	Structural Response of Pervious Concrete Pavement Systems Using Falling Weight Deflectometer Testing and Analysis. Journal of Transportation Engineering, 2011, 137, 907-917.	0.9	14
28	A Radio Propagation Model for Wireless Underground Sensor Networks. , 2011, , .		13
29	Mechanically reinforced granular shoulders on soft subgrade: Laboratory and full scale studies. Geotextiles and Geomembranes, 2011, 29, 149-160.	2.3	13
30	Use of Geothermal Deep Foundations for Bridge Deicing. Transportation Research Record, 2013, 2363, 56-65.	1.0	13
31	Modified–Thermal Borehole Shear Test Device and Testing Procedure to Investigate the Soil-Structure Interaction of Energy Piles. Geotechnical Testing Journal, 2017, 40, 1043-1056.	0.5	12
32	Performance Problems and Stabilization Techniques for Granular Shoulders. Journal of Performance of Constructed Facilities, 2010, 24, 159-169.	1.0	10
33	Enhanced Load-Transfer Analysis for Friction Piles Using a Modified Borehole Shear Test. Geotechnical Testing Journal, 2012, 35, 20120071.	0.5	9
34	Improving Prediction of the Load-Displacement Response of Axially Loaded Friction Piles. , $2011,$, .		7
35	Removal of Heavy Metals Using Pervious Concrete Material. , 2010, , .		5
36	Subsurface monitoring using low frequency wireless signal networks., 2012,,.		5

#	Article	IF	Citations
37	Modeling Load-Transfer Behavior of H-Piles Using Direct Shear and Penetration Test Results. Geotechnical Testing Journal, 2014, 37, 20130074.	0.5	5
38	Evaluating Effects of Cyclic Axial Loading on Soil-Pile Interface Properties Utilizing a Recently Developed Cyclic Interface Shear Test Device., 2021,,.		4
39	Performance of collapsible bridge approach backfill with geosynthetic drainage and reinforcement. Geosynthetics International, 2007, 14, 76-88.	1.5	3
40	Current Design and Construction Practices of Bridge Pile Foundations., 2009,,.		3
41	Numerical Modeling of Rammed Aggregate Pier Construction. , 2010, , .		3
42	Subsurface geo-applications of wireless signal networks. Proceedings of SPIE, 2011, , .	0.8	3
43	Load and Resistance Factor Design Calibration for Bridge Pile Foundations. Transportation Research Record, 2011, 2204, 233-241.	1.0	3
44	Measuring Soil-structure Interaction on Laterally Loaded Piles with Digital Image Correlation. Procedia IUTAM, 2012, 4, 66-72.	1.2	3
45	A Modeling Approach of Heat Transfer of Bridges Considering Vehicle-Induced Thermal Effects. Journal of Applied Meteorology and Climatology, 2018, 57, 2851-2869.	0.6	3
46	Characterization of Precast UHPC Pile Drivability. , 2009, , .		2
47	LRFD Resistance Factors Including the Influence of Pile Setup for Design of Steel H-Pile Using WEAP. , 2010, , .		2
48	UNIFORM FRACTIONAL FACTORIAL DESIGN TABLES FOR ENERGY PILES WITH MAXIMUM THERMAL CONDUCTANCE. WIT Transactions on Ecology and the Environment, 2017, , .	0.0	2
49	Evaluating the Influence of Surface Roughness on Interface Shear Strength of Cohesive Soil-Structure Interface Subjected to Axial Monotonic Loading. , 2022, , .		2
50	Measured Soil-Pile Interaction Pressures for Small-Diameter Laterally Loaded Pile in Loose Sand. , 2010, , .		1
51	Challenges of subsurface geo-sensing and monitoring using wireless signal networks. , 2012, , .		1
52	Real Time Global Subsurface Monitoring Using New Application of Wireless Signal Networks, Proof of Concept., 2012,,.		1
53	Closure to "Pile Setup in Cohesive Soil. I: Experimental Investigation―by Kam W. Ng, Matthew Roling, Sherif S. AbdelSalam, Muhannad T. Suleiman, and Sri Sritharan. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2014, 140, 07013004.	1.5	1
54	Feasibility of Bridge Deicing Using Geothermal Energy Piles in Different U.S. Climates. Transportation Research Record, 0, , 036119812210882.	1.0	1

#	Article	IF	CITATIONS
55	Closure to "Load Transfer in Rammed Aggregate Piers―by Muhannad T. Suleiman and David J. White. International Journal of Geomechanics, 2008, 8, 324-324.	1.3	O
56	Lateral Load Response of a Reaction Column-Foundation System in Different Temperature Conditions. , 2009, , .		0
57	Investigation of LRFD Resistance Factors with Consideration to Soil Variability along the Pile Length. , $2011, , .$		O
58	Measured Soil-Pile Interaction for Small Diameter Piles Embedded in Granular Soil Subjected to Lateral Soil Movement., 2012,,.		0
59	Soil Bonding Using Bio-Inspired Flexible Calcite (BiFC) Precipitation. , 2022, , .		0