
James C Whisstock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9192359/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protein engineering of a stable and potent anti-inflammatory IL-37-Fc fusion with enhanced therapeutic potential. Cell Chemical Biology, 2022, 29, 586-596.e4.	5.2	7
2	A mechanism for hereditary angioedema caused by a lysine 311–to–glutamic acid substitution in plasminogen. Blood, 2022, 139, 2816-2829.	1.4	17
3	Macrophage selfâ€renewal is regulated by transient expression of <i>PDGF―and VEGFâ€related factor 2</i> . FEBS Journal, 2022, 289, 3735-3751.	4.7	2
4	Mining folded proteomes in the era of accurate structure prediction. PLoS Computational Biology, 2022, 18, e1009930.	3.2	9
5	Mpeg1 is not essential for antibacterial or antiviral immunity, but is implicated in antigen presentation. Immunology and Cell Biology, 2022, 100, 529-546.	2.3	4
6	Structural analysis of the PTEN:P-Rex2 signaling complex reveals how cancer-associated mutations coordinate to hyperactivate Rac1. Science Signaling, 2021, 14, .	3.6	6
7	Characterization of the pathoimmunology of necrotizing enterocolitis reveals novel therapeutic opportunities. Nature Communications, 2020, 11, 5794.	12.8	53
8	Ancient but Not Forgotten: New Insights Into MPEG1, a Macrophage Perforin-Like Immune Effector. Frontiers in Immunology, 2020, 11, 581906.	4.8	17
9	Mapping the binding site of C1-inhibitor for polyanion cofactors. Molecular Immunology, 2020, 126, 8-13.	2.2	3
10	Human Plasminogen Exacerbates Clostridioides difficile Enteric Disease and Alters the Spore Surface. Gastroenterology, 2020, 159, 1431-1443.e6.	1.3	7
11	Anti-CDCP1 immuno-conjugates for detection and inhibition of ovarian cancer. Theranostics, 2020, 10, 2095-2114.	10.0	15
12	Automated cryo-lamella preparation for high-throughput in-situ structural biology. Journal of Structural Biology, 2020, 210, 107488.	2.8	70
13	Parsing the IL-37-Mediated Suppression of Inflammasome Function. Cells, 2020, 9, 178.	4.1	21
14	Effective targeting of intact and proteolysed CDCP1 for imaging and treatment of pancreatic ductal adenocarcinoma. Theranostics, 2020, 10, 4116-4133.	10.0	23
15	Solution structural model of the complex of the binding regions of human plasminogen with its M-protein receptor from Streptococcus pyogenes. Journal of Structural Biology, 2019, 208, 18-29.	2.8	8
16	Structure and Function Characterization of the a1a2 Motifs of Streptococcus pyogenes M Protein in Human Plasminogen Binding. Journal of Molecular Biology, 2019, 431, 3804-3813.	4.2	9
17	The cryo-EM structure of the acid activatable pore-forming immune effector Macrophage-expressed gene 1. Nature Communications, 2019, 10, 4288.	12.8	65
18	Control of growth factor signalling by MACPF proteins. Biochemical Society Transactions, 2019, 47, 801-810.	3.4	2

#	Article	IF	CITATIONS
19	Structural studies of plasmin inhibition. Biochemical Society Transactions, 2019, 47, 541-557.	3.4	24
20	Tranexamic acid is an active site inhibitor of urokinase plasminogen activator. Blood Advances, 2019, 3, 729-733.	5.2	22
21	Characterising the Subsite Specificity of Urokinaseâ€Type Plasminogen Activator and Tissueâ€Type Plasminogen Activator using a Sequenceâ€Defined Peptide Aldehyde Library. ChemBioChem, 2019, 20, 46-50.	2.6	5
22	Twenty years of bioinformatics research for protease-specific substrate and cleavage site prediction: a comprehensive revisit and benchmarking of existing methods. Briefings in Bioinformatics, 2019, 20, 2150-2166.	6.5	70
23	Brentuximab vedotin in T-cell lymphoma. Expert Review of Hematology, 2019, 12, 5-19.	2.2	18
24	Highly Potent and Selective Plasmin Inhibitors Based on the Sunflower Trypsin Inhibitor-1 Scaffold Attenuate Fibrinolysis in Plasma. Journal of Medicinal Chemistry, 2019, 62, 552-560.	6.4	27
25	Torso-Like Is a Component of the Hemolymph and Regulates the Insulin Signaling Pathway in <i>Drosophila</i> . Genetics, 2018, 208, 1523-1533.	2.9	8
26	Genome-Wide Screen for New Components of the <i>Drosophila melanogaster</i> Torso Receptor Tyrosine Kinase Pathway. G3: Genes, Genomes, Genetics, 2018, 8, 761-769.	1.8	1
27	Perforin proteostasis is regulated through its C2 domain: supra-physiological cell death mediated by T431D-perforin. Cell Death and Differentiation, 2018, 25, 1517-1529.	11.2	4
28	Crystal structure of TcpK in complex with oriT DNA of the antibiotic resistance plasmid pCW3. Nature Communications, 2018, 9, 3732.	12.8	18
29	PhosContext2vec: a distributed representation of residue-level sequence contexts and its application to general and kinase-specific phosphorylation site prediction. Scientific Reports, 2018, 8, 8240.	3.3	25
30	The first transmembrane region of complement component-9 acts as a brake on its self-assembly. Nature Communications, 2018, 9, 3266.	12.8	56
31	Antibodies: From novel repertoires to defining and refining the structure of biologically important targets. Methods, 2017, 116, 12-22.	3.8	6
32	Real-time visualization of perforin nanopore assembly. Nature Nanotechnology, 2017, 12, 467-473.	31.5	88
33	Homodimerization attenuates the anti-inflammatory activity of interleukin-37. Science Immunology, 2017, 2, .	11.9	51
34	Maternal Torso-Like Coordinates Tissue Folding During <i>Drosophila</i> Gastrulation. Genetics, 2017, 206, 1459-1468.	2.9	11
35	Cell Traversal Activity Is Important for Plasmodium falciparum Liver Infection in Humanized Mice. Cell Reports, 2017, 18, 3105-3116.	6.4	91
36	The Structural Basis for Complement Inhibition by Gigastasin, a Protease Inhibitor from the Giant Amazon Leech. Journal of Immunology, 2017, 199, 3883-3891.	0.8	14

#	Article	IF	CITATIONS
37	An Essential Role of Maspin in Embryogenesis and Tumor Suppression—Letter. Cancer Research, 2017, 77, 5207-5207.	0.9	1
38	Perforin—A key (shaped) weapon in the immunological arsenal. Seminars in Cell and Developmental Biology, 2017, 72, 117-123.	5.0	24
39	Regulation of perforin activation and preâ€synaptic toxicity through Câ€ŧerminal glycosylation. EMBO Reports, 2017, 18, 1775-1785.	4.5	27
40	X-ray crystal structure of plasmin with tranexamic acid–derived active site inhibitors. Blood Advances, 2017, 1, 766-771.	5.2	25
41	Mice Lacking Brinp2 or Brinp3, or Both, Exhibit Behaviors Consistent with Neurodevelopmental Disorders. Frontiers in Behavioral Neuroscience, 2016, 10, 196.	2.0	12
42	TcpM: a novel relaxase that mediates transfer of large conjugative plasmids from <i>Clostridium perfringens</i> . Molecular Microbiology, 2016, 99, 884-896.	2.5	36
43	N-terminal domain of Bothrops asper Myotoxin II Enhances the Activity of Endothelin Converting Enzyme-1 and Neprilysin. Scientific Reports, 2016, 6, 22413.	3.3	8
44	Development of the Cellular Immune System of Drosophila Requires the Membrane Attack Complex/Perforin-Like Protein Torso-Like. Genetics, 2016, 204, 675-681.	2.9	11
45	Structure of the poly-C9 component of the complement membrane attack complex. Nature Communications, 2016, 7, 10588.	12.8	112
46	Smoothing a rugged protein folding landscape by sequence-based redesign. Scientific Reports, 2016, 6, 33958.	3.3	22
47	Brinp1 â^'/â^' mice exhibit autism-like behaviour, altered memory, hyperactivity and increased parvalbumin-positive cortical interneuron density. Molecular Autism, 2016, 7, 22.	4.9	31
48	Giant MACPF/CDC pore forming toxins: A class of their own. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 475-486.	2.6	61
49	Torso-like mediates extracellular accumulation of Furin-cleaved Trunk to pattern the Drosophila embryo termini. Nature Communications, 2015, 6, 8759.	12.8	31
50	Stability of the Octameric Structure Affects Plasminogen-Binding Capacity of Streptococcal Enolase. PLoS ONE, 2015, 10, e0121764.	2.5	14
51	Perforin and granzymes: function, dysfunction and human pathology. Nature Reviews Immunology, 2015, 15, 388-400.	22.7	858
52	Stonefish toxin defines an ancient branch of the perforin-like superfamily. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15360-15365.	7.1	69
53	Analysis of Perforin Assembly by Quartz Crystal Microbalance Reveals a Role for Cholesterol and Calcium-independent Membrane Binding. Journal of Biological Chemistry, 2015, 290, 31101-31112.	3.4	4
54	GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome. Bioinformatics, 2015, 31, 1411-1419.	4.1	167

#	Article	IF	CITATIONS
55	IL-37 requires the receptors IL-18Rα and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction. Nature Immunology, 2015, 16, 354-365.	14.5	352
56	Preferential Acquisition and Activation of Plasminogen Glycoform II by PAM Positive Group A Streptococcal Isolates. Biochemistry, 2015, 54, 3960-3968.	2.5	4
57	Bone morphogenetic protein/retinoic acid inducible neural-specific protein (brinp) expression during Danio rerio development. Gene Expression Patterns, 2015, 18, 37-43.	0.8	9
58	Conformational Changes during Pore Formation by the Perforin-Related Protein Pleurotolysin. PLoS Biology, 2015, 13, e1002049.	5.6	114
59	Structural Basis for Ca2+-mediated Interaction of the Perforin C2 Domain with Lipid Membranes. Journal of Biological Chemistry, 2015, 290, 25213-25226.	3.4	25
60	The Phosphatidylinositol (3,4,5)-Trisphosphate-dependent Rac Exchanger 1·Ras-related C3 Botulinum Toxin Substrate 1 (P-Rex1·Rac1) Complex Reveals the Basis of Rac1 Activation in Breast Cancer Cells. Journal of Biological Chemistry, 2015, 290, 20827-20840.	3.4	46
61	A New Model for Pore Formation by Cholesterol-Dependent Cytolysins. PLoS Computational Biology, 2014, 10, e1003791.	3.2	33
62	Trunk cleavage is essential for Drosophila terminal patterning and can occur independently of Torso-like. Nature Communications, 2014, 5, 3419.	12.8	26
63	Maspin is not required for embryonic development or tumour suppression. Nature Communications, 2014, 5, 3164.	12.8	30
64	Cascleave 2.0, a new approach for predicting caspase and granzyme cleavage targets. Bioinformatics, 2014, 30, 71-80.	4.1	63
65	The Perforin Pore Facilitates the Delivery of Cationic Cargos. Journal of Biological Chemistry, 2014, 289, 9172-9181.	3.4	30
66	The Three-dimensional Structure of the Extracellular Adhesion Domain of the Sialic Acid-binding Adhesin SabA from Helicobacter pylori. Journal of Biological Chemistry, 2014, 289, 6332-6340.	3.4	54
67	High resolution structure of cleaved Serpin 42ÂDa from Drosophila melanogaster. BMC Structural Biology, 2014, 14, 14.	2.3	15
68	Reconciling the Structural Attributes of Avian Antibodies. Journal of Biological Chemistry, 2014, 289, 15384-15392.	3.4	28
69	Capturing embryonic development from metamorphosis: how did the terminal patterning signalling pathway of Drosophila evolve?. Current Opinion in Insect Science, 2014, 1, 45-51.	4.4	9
70	A tale of two specificities: bispecific antibodies for therapeutic and diagnostic applications. Trends in Biotechnology, 2013, 31, 621-632.	9.3	148
71	Torso-like functions independently of Torso to regulate <i>Drosophila</i> growth and developmental timing. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14688-14692.	7.1	48
72	Structural and Functional Analysis of the Pore-Forming Toxin NetB from Clostridium perfringens. MBio, 2013, 4, e00019-13.	4.1	64

#	Article	IF	CITATIONS
73	Torqueing about pores. Nature Chemical Biology, 2013, 9, 605-606.	8.0	1
74	Perforin forms transient pores on the target cell plasma membrane to facilitate rapid access of granzymes during killer cell attack. Blood, 2013, 121, 2659-2668.	1.4	208
75	New insights into the structure and function of the plasminogen/plasmin system. Current Opinion in Structural Biology, 2013, 23, 836-841.	5.7	112
76	Defining the interaction of perforin with calcium and the phospholipid membrane. Biochemical Journal, 2013, 456, 323-335.	3.7	16
77	The x-ray crystal structure of mannose-binding lectin-associated serine proteinase-3 reveals the structural basis for enzyme inactivity associated with the Carnevale, Mingarelli, Malpuech, and Michels (3MC) syndrome Journal of Biological Chemistry, 2013, 288, 28307.	3.4	0
78	A Molecular Switch Governs the Interaction between the Human Complement Protease C1s and Its Substrate, Complement C4. Journal of Biological Chemistry, 2013, 288, 15821-15829.	3.4	29
79	Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates. Bioscience Reports, 2013, 33, 137-44.	2.4	16
80	Mechanistic characterization and crystal structure of a small molecule inactivator bound to plasminogen activator inhibitor-1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4941-9.	7.1	27
81	The X-ray Crystal Structure of Mannose-binding Lectin-associated Serine Proteinase-3 Reveals the Structural Basis for Enzyme Inactivity Associated with the Carnevale, Mingarelli, Malpuech, and Michels (3MC) Syndrome. Journal of Biological Chemistry, 2013, 288, 22399-22407.	3.4	23
82	Assembling the machinery of coagulation. Blood, 2013, 122, 2773-2774.	1.4	2
83	RAB-Like 2 Has an Essential Role in Male Fertility, Sperm Intra-Flagellar Transport, and Tail Assembly. PLoS Genetics, 2012, 8, e1002969.	3.5	72
84	Efficient large-scale protein sequence comparison and gene matching to identify orthologs and co-orthologs. Nucleic Acids Research, 2012, 40, e44-e44.	14.5	17
85	Predicting giant transmembrane β-barrel architecture. Bioinformatics, 2012, 28, 1299-1302.	4.1	25
86	A Versatile Monoclonal Antibody Specific to Human SERPINB5. Hybridoma, 2012, 31, 333-339.	0.4	3
87	The Extracellular Protein Factor Epf from Streptococcus pyogenes Is a Cell Surface Adhesin That Binds to Cells through an N-terminal Domain Containing a Carbohydrate-binding Module. Journal of Biological Chemistry, 2012, 287, 38178-38189.	3.4	18
88	X-ray crystal structure of the streptococcal specific phage lysin PlyC. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12752-12757.	7.1	80
89	The AprV5 Subtilase Is Required for the Optimal Processing of All Three Extracellular Serine Proteases from Dichelobacter nodosus. PLoS ONE, 2012, 7, e47932.	2.5	12
90	X-ray Crystal Structure and Specificity of the Plasmodium falciparum Malaria Aminopeptidase PfM18AAP. Journal of Molecular Biology, 2012, 422, 495-507.	4.2	33

#	Article	IF	CITATIONS
91	Protecting a serial killer: pathways for perforin trafficking and self-defence ensure sequential target cell death. Trends in Immunology, 2012, 33, 406-412.	6.8	71
92	The X-ray Crystal Structure of Full-Length Human Plasminogen. Cell Reports, 2012, 1, 185-190.	6.4	189
93	Perforin evolved from a gene duplication of MPEG1, followed by a complex pattern of gene gain and loss within Euteleostomi. BMC Evolutionary Biology, 2012, 12, 59.	3.2	43
94	The conjugation protein TcpC from <i>Clostridium perfringens</i> is structurally related to the type IV secretion system protein VirB8 from Gramâ€negative bacteria. Molecular Microbiology, 2012, 83, 275-288.	2.5	68
95	Structural insights into multi-protein communication systems. Current Opinion in Structural Biology, 2012, 22, 313-315.	5.7	0
96	A Novel DNM2 Mutation Displaying Embryonic Lethality and Impaired Transferrin Uptake Identified in a Mouse ENU Mutagenesis Screen for Genes Perturbing Erythropoiesis. Blood, 2012, 120, 608-608.	1.4	1
97	Fingerprinting the Substrate Specificity of M1 and M17 Aminopeptidases of Human Malaria, Plasmodium falciparum. PLoS ONE, 2012, 7, e31938.	2.5	64
98	PROSPER: An Integrated Feature-Based Tool for Predicting Protease Substrate Cleavage Sites. PLoS ONE, 2012, 7, e50300.	2.5	265
99	Synthesis of New (â^')-Bestatin-Based Inhibitor Libraries Reveals a Novel Binding Mode in the S1 Pocket of the Essential Malaria M1 Metalloaminopeptidase. Journal of Medicinal Chemistry, 2011, 54, 1655-1666.	6.4	54
100	Molecular basis of α ₁ â€antitrypsin deficiency revealed by the structure of a domainâ€swapped trimer. EMBO Reports, 2011, 12, 1011-1017.	4.5	142
101	Functional analysis of the <i>Listeria monocytogenes</i> secretion chaperone PrsA2 and its multiple contributions to bacterial virulence. Molecular Microbiology, 2011, 80, 1530-1548.	2.5	43
102	Protection from Endogenous Perforin: Glycans and the C Terminus Regulate Exocytic Trafficking in Cytotoxic Lymphocytes. Immunity, 2011, 34, 879-892.	14.3	63
103	Automatic generation of protein structure cartoons with Pro-origami. Bioinformatics, 2011, 27, 3315-3316.	4.1	173
104	Crystallography of Serpins and Serpin Complexes. Methods in Enzymology, 2011, 501, 63-87.	1.0	17
105	Preface. Methods in Enzymology, 2011, 501, xvii-xviii.	1.0	0
106	Preface. Methods in Enzymology, 2011, 499, xix-xx.	1.0	0
107	Predicting Serpin/Protease Interactions. Methods in Enzymology, 2011, 501, 237-273.	1.0	7
108	S1 Pocket of a Bacterially Derived Subtilisin-like Protease Underpins Effective Tissue Destruction. Journal of Biological Chemistry, 2011, 286, 42180-42187.	3.4	17

#	Article	IF	CITATIONS
109	BIOINFORMATIC APPROACHES FOR PREDICTING SUBSTRATES OF PROTEASES. Journal of Bioinformatics and Computational Biology, 2011, 09, 149-178.	0.8	31
110	Bestatin-based chemical biology strategy reveals distinct roles for malaria M1- and M17-family aminopeptidases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E526-34.	7.1	116
111	Structure/function analysis of lymphocyte perforin: role as an extrinsic tumour suppressor. Pathology, 2010, 42, S45-S46.	0.6	Ο
112	Plasmodium falciparum neutral aminopeptidases: new targets for anti-malarials. Trends in Biochemical Sciences, 2010, 35, 53-61.	7.5	108
113	Crystallization of the virulent and benign subtilisin-like proteases from the ovine footrot pathogenDichelobacter nodosus. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 289-293.	0.7	3
114	The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature, 2010, 468, 447-451.	27.8	364
115	Perforin: structure, function, and role in human immunopathology. Immunological Reviews, 2010, 235, 35-54.	6.0	171
116	MUSTANG-MR Structural Sieving Server: Applications in Protein Structural Analysis and Crystallography. PLoS ONE, 2010, 5, e10048.	2.5	47
117	MrGrid: A Portable Grid Based Molecular Replacement Pipeline. PLoS ONE, 2010, 5, e10049.	2.5	2
118	EGM: encapsulated gene-by-gene matching to identify gene orthologs and homologous segments in genomes. Bioinformatics, 2010, 26, 2076-2084.	4.1	7
119	Cascleave: towards more accurate prediction of caspase substrate cleavage sites. Bioinformatics, 2010, 26, 752-760.	4.1	148
120	Serpins Flex Their Muscle. Journal of Biological Chemistry, 2010, 285, 24307-24312.	3.4	97
121	Structure of the <i>Plasmodium falciparum</i> M17 aminopeptidase and significance for the design of drugs targeting the neutral exopeptidases. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2449-2454.	7.1	80
122	Maspin (SERPINB5) Is an Obligate Intracellular Serpin. Journal of Biological Chemistry, 2010, 285, 10862-10869.	3.4	38
123	Serpins flex their muscle. I. PUTTING THE CLAMPS ON PROTEOLYSIS IN DIVERSE BIOLOGICAL SYSTEMS Journal of Biological Chemistry, 2010, 285, 38740.	3.4	0
124	The Subtilisin-Like Protease AprV2 Is Required for Virulence and Uses a Novel Disulphide-Tethered Exosite to Bind Substrates. PLoS Pathogens, 2010, 6, e1001210.	4.7	81
125	The Type III Effectors NleE and NleB from Enteropathogenic E. coli and OspZ from Shigella Block Nuclear Translocation of NF-κB p65. PLoS Pathogens, 2010, 6, e1000898.	4.7	201
126	Serpins Flex Their Muscle. Journal of Biological Chemistry, 2010, 285, 24299-24305.	3.4	128

#	Article	lF	CITATIONS
127	Molecular contortionism – on the physical limits of serpin â€~loop-sheet' polymers. Biological Chemistry, 2010, 391, 973-82.	2.5	14
128	Highlight: The Biology of Proteolytic Systems. Biological Chemistry, 2010, 391, 837.	2.5	0
129	The X-Ray Crystal Structure of Escherichia coli Succinic Semialdehyde Dehydrogenase; Structural Insights into NADP+/Enzyme Interactions. PLoS ONE, 2010, 5, e9280.	2.5	31
130	High-throughput protein structure determination using grid computing. , 2009, , .		1
131	Structural basis for the inhibition of the essential <i>Plasmodium falciparum</i> M1 neutral aminopeptidase. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2537-2542.	7.1	133
132	Structure of granzyme C reveals an unusual mechanism of protease autoinhibition. Proceedings of the United States of America, 2009, 106, 5587-5592.	7.1	25
133	The Molecular Basis for Perforin Oligomerization and Transmembrane Pore Assembly. Immunity, 2009, 30, 684-695.	14.3	123
134	The role of strand 1 of the C \hat{l}^2 -sheet in the structure and function of $\hat{l}\pm 1$ -antitrypsin. Protein Science, 2009, 10, 2518-2524.	7.6	8
135	Temperature sensitivity of human perforin mutants unmasks subtotal loss of cytotoxicity, delayed FHL, and a predisposition to cancer. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9809-9814.	7.1	114
136	Structural Mechanisms of Inactivation in Scabies Mite Serine Protease Paralogues. Journal of Molecular Biology, 2009, 390, 635-645.	4.2	33
137	Structural determinants of GAD antigenicity. Molecular Immunology, 2009, 47, 493-505.	2.2	16
138	Modulation of the proteolytic activity of the complement protease C1s by polyanions: implications for polyanion-mediated acceleration of interaction between C1s and SERPING1. Biochemical Journal, 2009, 422, 295-303.	3.7	16
139	Conformational Change in the Chromatin Remodelling Protein MENT. PLoS ONE, 2009, 4, e4727.	2.5	3
140	Prodepth: Predict Residue Depth by Support Vector Regression Approach from Protein Sequences Only. PLoS ONE, 2009, 4, e7072.	2.5	40
141	Federated repositories of X-ray diffraction images. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 810-814.	2.5	42
142	Serpins' mystery solved. Nature, 2008, 455, 1189-1190.	27.8	18
143	The MACPF/CDC family of pore-forming toxins. Cellular Microbiology, 2008, 10, 1765-1774.	2.1	250
144	A serpin in the cellulosome of the anaerobic fungus Piromyces sp. strain E2. Mycological Research, 2008, 112, 999-1006.	2.5	34

4

#	Article	IF	CITATIONS
145	A Structural Basis for Loop C-Sheet Polymerization in Serpins. Journal of Molecular Biology, 2008, 376, 1348-1359.	4.2	20
146	The Crystal Structure of Dehl Reveals a New α-Haloacid Dehalogenase Fold and Active-Site Mechanism. Journal of Molecular Biology, 2008, 378, 284-294.	4.2	48
147	Elucidation of the substrate specificity of the MASP-2 protease of the lectin complement pathway and identification of the enzyme as a major physiological target of the serpin, C1-inhibitor. Molecular Immunology, 2008, 45, 670-677.	2.2	64
148	COOH-Terminal Clustering of Autoantibody and T-Cell Determinants on the Structure of GAD65 Provide Insights Into the Molecular Basis of Autoreactivity. Diabetes, 2008, 57, 1293-1301.	0.6	43
149	Bioinformatics of Protein Function. , 2008, , 79-119.		0
150	X-ray crystal structure of the fibrinolysis inhibitor $\hat{l}\pm 2$ -antiplasmin. Blood, 2008, 111, 2049-2052.	1.4	35
151	DNA Accelerates the Inhibition of Human Cathepsin V by Serpins. Journal of Biological Chemistry, 2007, 282, 36980-36986.	3.4	40
152	RCPdb: An evolutionary classification and codon usage database for repeat-containing proteins. Genome Research, 2007, 17, 1118-1127.	5.5	36
153	SerpinB6 is an Inhibitor of Kallikrein-8 in Keratinocytes. Journal of Biochemistry, 2007, 142, 435-442.	1.7	24
154	Aeropin from the Extremophile Pyrobaculum aerophilum Bypasses the Serpin Misfolding Trap. Journal of Biological Chemistry, 2007, 282, 26802-26809.	3.4	20
155	The 1.6ÂÃ Crystal Structure of the Catalytic Domain of PlyB, a Bacteriophage Lysin Active Against Bacillus anthracis. Journal of Molecular Biology, 2007, 366, 540-550.	4.2	81
156	eResearch Solutions for High Throughput Structural Biology. , 2007, , .		2
157	A Common Fold Mediates Vertebrate Defense and Bacterial Attack. Science, 2007, 317, 1548-1551.	12.6	261
158	The N terminus of the serpin, tengpin, functions to trap the metastable native state. EMBO Reports, 2007, 8, 658-663.	4.5	48
159	GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop. Nature Structural and Molecular Biology, 2007, 14, 280-286.	8.2	189
160	The Structure of Chagasin in Complex with a Cysteine Protease Clarifies the Binding Mode and Evolution of an Inhibitor Family. Structure, 2007, 15, 535-543.	3.3	74
161	SERPINB11 Is a New Noninhibitory Intracellular Serpin. Journal of Biological Chemistry, 2007, 282, 24948-24960.	3.4	25

162 Evolution and Classification of the Serpin Superfamily. , 2007, , 1-33.

#	Article	IF	CITATIONS
163	Serpins in Prokaryotes. , 2007, , 131-162.		6
164	MENT, a Chromatin-Associated Serpin from Avian Blood Cells: Structure and Function. , 2007, , 243-259.		0
165	An overview of the serpin superfamily. Genome Biology, 2006, 7, 216.	9.6	550
166	Mechanisms of serpin dysfunction in disease. Expert Reviews in Molecular Medicine, 2006, 8, 1-19.	3.9	32
167	The REFOLD database: a tool for the optimization of protein expression and refolding. Nucleic Acids Research, 2006, 34, D207-D212.	14.5	42
168	Hijacking of a Substrate-binding Protein Scaffold for use in Mycobacterial Cell Wall Biosynthesis. Journal of Molecular Biology, 2006, 359, 983-997.	4.2	23
169	The Crystal Structure of the Transthyretin-like Protein from Salmonella dublin, a Prokaryote 5-Hydroxyisourate Hydrolase. Journal of Molecular Biology, 2006, 359, 1389-1399.	4.2	42
170	REFOLD: An analytical database of protein refolding methods. Protein Expression and Purification, 2006, 46, 166-171.	1.3	31
171	MUSTANG: A multiple structural alignment algorithm. Proteins: Structure, Function and Bioinformatics, 2006, 64, 559-574.	2.6	615
172	AB5 subtilase cytotoxin inactivates the endoplasmic reticulum chaperone BiP. Nature, 2006, 443, 548-552.	27.8	351
173	X-ray crystal structure of MENT: evidence for functional loop–sheet polymers in chromatin condensation. EMBO Journal, 2006, 25, 3144-3155.	7.8	41
174	Molecular gymnastics: serpin structure, folding and misfolding. Current Opinion in Structural Biology, 2006, 16, 761-768.	5.7	139
175	The major human and mouse granzymes are structurally and functionally divergent. Journal of Cell Biology, 2006, 175, 619-630.	5.2	187
176	Leucine-rich Repeats 2-4 (Leu60-Glu128) of Platelet Glycoprotein Ibα Regulate Shear-dependent Cell Adhesion to von Willebrand Factor. Journal of Biological Chemistry, 2006, 281, 26419-26423.	3.4	27
177	T cell receptor recognition of a 'super-bulged' major histocompatibility complex class l–bound peptide. Nature Immunology, 2005, 6, 1114-1122.	14.5	280
178	The matrix refolded. Nature Methods, 2005, 2, 3-3.	19.0	29
179	Managing and mining protein crystallization data. Proteins: Structure, Function and Bioinformatics, 2005, 62, 4-7.	2.6	3
180	The Type Iα Inositol Polyphosphate 4-Phosphatase Generates and Terminates Phosphoinositide 3-Kinase Signals on Endosomes and the Plasma Membrane. Molecular Biology of the Cell, 2005, 16, 2218-2233.	2.1	110

#	Article	IF	CITATIONS
181	Functional insights from the distribution and role of homopeptide repeat-containing proteins. Genome Research, 2005, 15, 537-551.	5.5	189
182	Cationic Sites on Granzyme B Contribute to Cytotoxicity by Promoting Its Uptake into Target Cells. Molecular and Cellular Biology, 2005, 25, 7854-7867.	2.3	75
183	POPS: A COMPUTATIONAL TOOL FOR MODELING AND PREDICTING PROTEASE SPECIFICITY. Journal of Bioinformatics and Computational Biology, 2005, 03, 551-585.	0.8	89
184	The High Resolution Crystal Structure of the Human Tumor Suppressor Maspin Reveals a Novel Conformational Switch in the G-helix. Journal of Biological Chemistry, 2005, 280, 22356-22364.	3.4	69
185	Elucidation of the Substrate Specificity of the C1s Protease of the Classical Complement Pathway. Journal of Biological Chemistry, 2005, 280, 39510-39514.	3.4	36
186	The High Resolution Crystal Structure of a Native Thermostable Serpin Reveals the Complex Mechanism Underpinning the Stressed to Relaxed Transition. Journal of Biological Chemistry, 2005, 280, 8435-8442.	3.4	29
187	The Murine Orthologue of Human Antichymotrypsin. Journal of Biological Chemistry, 2005, 280, 43168-43178.	3.4	97
188	PROGRESSIVE MULTIPLE ALIGNMENT USING SEQUENCE TRIPLET OPTIMIZATIONS AND THREE-RESIDUE EXCHANGE COSTS. Journal of Bioinformatics and Computational Biology, 2004, 02, 719-745.	0.8	12
189	CLIMS: Crystallography Laboratory Information Management System. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1691-1693.	2.5	9
190	The human serpin proteinase inhibitor-9 self-associates at physiological temperatures. Protein Science, 2004, 13, 1859-1864.	7.6	7
191	Structural and functional analysis of the Josephin domain of the polyglutamine protein ataxin-3. Biochemical and Biophysical Research Communications, 2004, 322, 387-394.	2.1	58
192	Computational analysis of evolution and conservation in a protein superfamily. Methods, 2004, 32, 73-92.	3.8	11
193	Antithrombin: in control of coagulation. International Journal of Biochemistry and Cell Biology, 2004, 36, 386-389.	2.8	128
194	The Evolution of Enzyme Specificity in Fasciola spp Journal of Molecular Evolution, 2003, 57, 1-15.	1.8	106
195	The 1.5 Ã Crystal Structure of a Prokaryote Serpin. Structure, 2003, 11, 387-397.	3.3	44
196	Prediction of protein function from protein sequence and structure. Quarterly Reviews of Biophysics, 2003, 36, 307-340.	5.7	376
197	Hurpin Is a Selective Inhibitor of Lysosomal Cathepsin L and Protects Keratinocytes from Ultraviolet-Induced Apoptosis. Biochemistry, 2003, 42, 7381-7389.	2.5	72
198	Importance of the Prime Subsites of the C1s Protease of the Classical Complement Pathway for Recognition of Substrates. Biochemistry, 2003, 42, 14939-14945.	2.5	11

#	Article	IF	CITATIONS
199	Characterization of the Specificity of Arginine-Specific Gingipains fromPorphyromonas gingivalisReveals Active Site Differences between Different Forms of the Enzymesâ€. Biochemistry, 2003, 42, 11693-11700.	2.5	29
200	Introduction of a Mutation in the Shutter Region of Antithrombin (Phe77 → Leu) Increases Affinity for Heparin and Decreases Thermal Stabilityâ€. Biochemistry, 2003, 42, 10169-10173.	2.5	6
201	A Structural Basis for the Selection of Dominant $\hat{I}\pm\hat{I}^2$ T Cell Receptors in Antiviral Immunity. Immunity, 2003, 18, 53-64.	14.3	321
202	Determination of the P1′, P2′ and P3′ subsite-specificity of factor Xa. International Journal of Biochemistry and Cell Biology, 2003, 35, 221-225.	2.8	17
203	Identification of a Novel Domain in Two Mammalian Inositol-polyphosphate 5-Phosphatases That Mediates Membrane Ruffle Localization. Journal of Biological Chemistry, 2003, 278, 11376-11385.	3.4	97
204	Subunit γ-Green Fluorescent Protein Fusions Are Functionally Incorporated into Mitochondrial F1F0-ATP Synthase, Arguing Against a Rigid Cap Structure at the Top of F1. Journal of Biological Chemistry, 2003, 278, 251-256.	3.4	21
205	Cloning and Expression of the Major SecretedCathepsin B-Like Protein from Juvenile Fasciola hepatica andAnalysis of Immunogenicity following Liver FlukeInfection. Infection and Immunity, 2003, 71, 6921-6932.	2.2	88
206	Role of the M-loop and Reactive Center Loop Domains in the Folding and Bridging of Nucleosome Arrays by MENT. Journal of Biological Chemistry, 2003, 278, 43384-43393.	3.4	45
207	Molecular Determinants of the Mechanism Underlying Acceleration of the Interaction between Antithrombin and Factor Xa by Heparin Pentasaccharide. Journal of Biological Chemistry, 2002, 277, 15971-15978.	3.4	23
208	Inhibitory Activity of a Heterochromatin-associated Serpin (MENT) against Papain-like Cysteine Proteinases Affects Chromatin Structure and Blocks Cell Proliferation. Journal of Biological Chemistry, 2002, 277, 13192-13201.	3.4	77
209	Serpins in Prokaryotes. Molecular Biology and Evolution, 2002, 19, 1881-1890.	8.9	112
210	Probing the Role of the F-Helix in Serpin Stability through a Single Tryptophan Substitution. Biochemistry, 2002, 41, 4575-4581.	2.5	42
211	Thermal Unfolding of Proteins Studied by Coupled Reversed-Phase HPLCâ^'Electrospray Ionization Mass Spectrometry Techniques Based on Isotope Exchange Effects. Analytical Chemistry, 2002, 74, 1467-1475.	6.5	10
212	The Serpin SQN-5 Is a Dual Mechanistic-Class Inhibitor of Serine and Cysteine Proteinases. Biochemistry, 2002, 41, 3189-3199.	2.5	61
213	Evidence That Serpin Architecture Intrinsically Supports Papain-like Cysteine Protease Inhibition: Engineering α1-Antitrypsin To Inhibit Cathepsin Proteases. Biochemistry, 2002, 41, 4998-5004.	2.5	71
214	The FxRxHrS Motif: A Conserved Region Essential for DNA Binding of the VirR Response Regulator from Clostridium perfringens. Journal of Molecular Biology, 2002, 322, 997-1011.	4.2	24
215	Molecular Modeling of the Seven Tandem Leucine-Rich Repeats within the Ligand-Binding Region of Platelet Glycoprotein Ibα. Thrombosis and Haemostasis, 2002, 87, 329-333.	3.4	12
216	Serpins: Finely Balanced Conformational Traps. IUBMB Life, 2002, 54, 1-7.	3.4	38

#	Article	IF	CITATIONS
217	Molecular modeling of the seven tandem leucine-rich repeats within the ligand-binding region of platelet glycoprotein Ib alpha. Thrombosis and Haemostasis, 2002, 87, 329-33.	3.4	1
218	Structure of a Serpin-Enzyme Complex Probed by Cysteine Substitutions and Fluorescence Spectroscopy. Biophysical Journal, 2001, 80, 491-497.	0.5	8
219	Protein structural alignments and functional genomics. Proteins: Structure, Function and Bioinformatics, 2001, 42, 378-382.	2.6	76
220	The Serpins Are an Expanding Superfamily of Structurally Similar but Functionally Diverse Proteins. Journal of Biological Chemistry, 2001, 276, 33293-33296.	3.4	1,069
221	Importance of the P4′ Residue in Human Granzyme B Inhibitors and Substrates Revealed by Scanning Mutagenesis of the Proteinase Inhibitor 9 Reactive Center Loop. Journal of Biological Chemistry, 2001, 276, 15177-15184.	3.4	68
222	The Yeast Inositol Polyphosphate 5-Phosphatase Inp54p Localizes to the Endoplasmic Reticulum via a C-terminal Hydrophobic Anchoring Tail. Journal of Biological Chemistry, 2001, 276, 7643-7653.	3.4	26
223	Mutagenesis of the dengue virus type 2 NS3 proteinase and the production of growth-restricted virus. Journal of General Virology, 2001, 82, 1647-1656.	2.9	27
224	Characterization and functional analysis of Serp3: a novel myxoma virus-encoded serpin involved in virulence. Journal of General Virology, 2001, 82, 1407-1417.	2.9	35
225	For the record: A single amino acid substitution affects substrate specificity in cysteine proteinases from Fasciola hepatica. Protein Science, 2000, 9, 2567-2572.	7.6	59
226	Structure and function of the von Willebrand factor A1 domain: analysis with monoclonal antibodies reveals distinct binding sites involved in recognition of the platelet membrane glycoprotein Ib-IX-V complex and ristocetin-dependent activation. Blood, 2000, 95, 164-172.	1.4	65
227	Requirement of leucine-rich repeats of glycoprotein (GP) lbα for shear-dependent and static binding of von Willebrand factor to the platelet membrane GP lb–lX-V complex. Blood, 2000, 95, 903-910.	1.4	131
228	Conformational Epitopes on the Diabetes Autoantigen GAD65 Identified by Peptide Phage Display and Molecular Modeling. Journal of Immunology, 2000, 165, 3830-3838.	0.8	38
229	The Inositol Polyphosphate 5-Phosphatases and the Apurinic/Apyrimidinic Base Excision Repair Endonucleases Share a Common Mechanism for Catalysis. Journal of Biological Chemistry, 2000, 275, 37055-37061.	3.4	81
230	Prediction of the Immunodominant Epitope of the Pyruvate Dehydrogenase Complex E2 in Primary Biliary Cirrhosis Using Phage Display. Journal of Immunology, 2000, 164, 3413-3419.	0.8	40
231	Conformational changes in serpins: I. the native and cleaved conformations of α 1 -antitrypsin 1 1Edited by J. M. Thornton. Journal of Molecular Biology, 2000, 295, 651-665.	4.2	62
232	Conformational changes in serpins: I. the native and cleaved conformations of α 1 -antitrypsin 1 1Edited by J. M. Thornton. Journal of Molecular Biology, 2000, 296, 685-699.	4.2	67
233	Conformational changes in serpins: II. the mechanism of activation of antithrombin by heparin. Journal of Molecular Biology, 2000, 301, 1287-1305.	4.2	93
234	Simple Modifications of the Serpin Reactive Site Loop Convert SCCA2 into a Cysteine Proteinase Inhibitor: A Critical Role for the P3â€~ Proline in Facilitating RSL Cleavageâ€. Biochemistry, 2000, 39, 7081-7091.	2.5	47

#	Article	IF	CITATIONS
235	Cleaved antitrypsin polymers at atomic resolution. Protein Science, 2000, 9, 417-420.	7.6	73
236	Phylogeny of the Serpin Superfamily: Implications of Patterns of Amino Acid Conservation for Structure and Function. Genome Research, 2000, 10, 1845-1864.	5.5	145
237	Probing the Unfolding Pathway of α1-Antitrypsin. Journal of Biological Chemistry, 1999, 274, 9482-9488.	3.4	72
238	Title is missing!. International Journal of Peptide Research and Therapeutics, 1999, 6, 185-192.	0.1	0
239	Use of synthetic peptides to delineate discontinuous sequence regions involved in epitope sites of the thyrotropin β-subunit. International Journal of Peptide Research and Therapeutics, 1999, 6, 185-192.	0.1	2
240	SH3 domains in prokaryotes. Trends in Biochemical Sciences, 1999, 24, 132-133.	7.5	110
241	Serpins in theCaenorhabditis elegans genome. , 1999, 36, 31-41.		18
242	Multiple alignment and sorting of peptides derived from phage-displayed random peptide libraries with polyclonal sera allows discrimination of relevant phagotopes. Molecular Immunology, 1999, 36, 659-667.	2.2	22
243	Expression and Purification of Recombinant Human Granzyme B from Pichia pastoris. Biochemical and Biophysical Research Communications, 1999, 261, 251-255.	2.1	60
244	An atlas of serpin conformations. Trends in Biochemical Sciences, 1998, 23, 63-67.	7.5	173
245	α1-Antitrypsin Polymerisation Can Occur by both Loop A and C Sheet Mechanisms. Biochemical and Biophysical Research Communications, 1998, 251, 1-5.	2.1	24
246	The 2.6 Ã structure of antithrombin indicates a conformational change at the heparin binding site 1 1Edited by R. Huber. Journal of Molecular Biology, 1997, 266, 601-609.	4.2	188
247	Importance of the release of strand 1C to the polymerization mechanism of inhibitory serpins. Protein Science, 1997, 6, 89-98.	7.6	64
248	Serpins. Advances in Experimental Medicine and Biology, 1997, , 5-15.	1.6	8
249	Conservation within the myosin motor domain: implications for structure and function. Structure, 1996, 4, 969-987.	3.3	224
250	Modeling of serpin-protease complexes: Antithrombin-thrombin, α1-antitrypsin (358Met→Arg)-thrombin, α1-antitrypsin (358Met→Arg)-trypsin, and antitrypsin-elastase. , 1996, 26, 288-303.		26
251	α1-Antitrypsin Mmalton (Phe52-deleted) Forms Loop-Sheet Polymers in Vivo Journal of Biological Chemistry, 1995, 270, 16864-16870.	3.4	133
252	Antithrombin and heparin. Trends in Molecular Medicine, 1995, 1, 226-231.	2.6	16