Jean-François Trontin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9192231/publications.pdf

Version: 2024-02-01

623734 752698 21 837 14 20 g-index citations h-index papers 21 21 21 828 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	<i>De novo</i> assembly of maritime pine transcriptome: implications for forest breeding and biotechnology. Plant Biotechnology Journal, 2014, 12, 286-299.	8.3	115
2	Forest tree genomics: 10 achievements from the past 10Âyears and future prospects. Annals of Forest Science, 2016, 73, 77-103.	2.0	91
3	Early molecular events involved in <i>Pinus pinaster</i> Ait. somatic embryo development under reduced water availability: transcriptomic and proteomic analyses. Physiologia Plantarum, 2014, 152, 184-201.	5.2	81
4	Advances in Conifer Somatic Embryogenesis Since Year 2000. Methods in Molecular Biology, 2016, 1359, 131-166.	0.9	67
5	Molecular Aspects of Conifer Zygotic and Somatic Embryo Development: A Review of Genome-Wide Approaches and Recent Insights. Methods in Molecular Biology, 2016, 1359, 167-207.	0.9	59
6	Long-term subculture randomly affects morphology and subsequent maturation of early somatic embryos in maritime pine. Plant Cell, Tissue and Organ Culture, 2006, 87, 95-108.	2.3	48
7	Cotyledonary somatic embryos of Pinus pinaster Ait. most closely resemble fresh, maturing cotyledonary zygotic embryos: biological, carbohydrate and proteomic analyses. Planta, 2014, 240, 1075-1095.	3.2	48
8	High gellan gum concentration and secondary somatic embryogenesis: two key factors to improve somatic embryo development in Pseudotsuga menziesii [Mirb.]. Plant Cell, Tissue and Organ Culture, 2018, 132, 137-155.	2.3	46
9	Expression patterns of two glutamine synthetase genes in zygotic and somatic pine embryos support specific roles in nitrogen metabolism during embryogenesis. New Phytologist, 2006, 169, 35-44.	7.3	39
10	Molecular evidence of true-to-type propagation of a 3-year-old Norway spruce through somatic embryogenesis. Planta, 2001, 213, 828-832.	3.2	37
11	High subculture frequency, maltose-based and hormone-free medium sustained early development of somatic embryos in maritime pine. In Vitro Cellular and Developmental Biology - Plant, 2005, 41, 494-504.	2.1	36
12	Repetitive somatic embryogenesis induced cytological and proteomic changes in embryogenic lines of Pseudotsuga menziesii [Mirb.]. BMC Plant Biology, 2018, 18, 164.	3.6	33
13	The role of arginine metabolic pathway during embryogenesis and germination in maritime pine (Pinus) Tj ETQq1	1 0.78431 3.1	.4 ₃₁ gBT /O <mark>ve</mark> t
14	Simple and efficient protocols for the initiation and proliferation of embryogenic tissue of Douglas-fir. Trees - Structure and Function, 2018, 32, 175-190.	1.9	29
15	Somatic Embryogenesis for More Effective Breeding and Deployment of Improved Varieties in Pinus spp.: Bottlenecks and Recent Advances. , 2016, , 319-365.		22
16	Cytological, Biochemical and Molecular Events of the Embryogenic State in Douglas-fir (Pseudotsuga) Tj ETQq0 0	0 _{3.8} BT/O	verlock 10 Tf
17	Transcriptional analysis of arogenate dehydratase genes identifies a link between phenylalanine biosynthesis and lignin biosynthesis. Journal of Experimental Botany, 2020, 71, 3080-3093.	4.8	10
18	Tree â€~memory': new insights on temperature-induced priming effects during early embryogenesis. Tree Physiology, 2021, 41, 906-911.	3.1	8

#	Article	IF	CITATIONS
19	Identification of Metabolic Pathways Differentially Regulated in Somatic and Zygotic Embryos of Maritime Pine. Frontiers in Plant Science, 2022, 13, .	3.6	8
20	Constitutive Overexpression of a Conifer WOX2 Homolog Affects Somatic Embryo Development in Pinus pinaster and Promotes Somatic Embryogenesis and Organogenesis in Arabidopsis Seedlings. Frontiers in Plant Science, 2022, 13, 838421.	3.6	7
21	Maritime Pine Genomics in Focus. Compendium of Plant Genomes, 2022, , 67-123.	0.5	4