Boran Kartal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9192064/publications.pdf

Version: 2024-02-01

41627 73587 14,834 81 51 79 h-index citations g-index papers 83 83 83 9545 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nitrogen input promotes denitrifying methanotrophs' abundance and contribution to methane emission reduction in coastal wetland and paddy soil. Environmental Pollution, 2022, 302, 119090.	3.7	20
2	Learning from microorganisms: using new insights in microbial physiology for sustainable nitrogen management. Current Opinion in Biotechnology, 2021, 67, 42-48.	3.3	9
3	Simultaneous Anaerobic and Aerobic Ammonia and Methane Oxidation under Oxygen Limitation Conditions. Applied and Environmental Microbiology, 2021, 87, e0004321.	1.4	3
4	Structural and functional characterization of the intracellular filament-forming nitrite oxidoreductase multiprotein complex. Nature Microbiology, 2021, 6, 1129-1139.	5.9	25
5	Characterization of a nitrite-reducing octaheme hydroxylamine oxidoreductase that lacks the tyrosine cross-link. Journal of Biological Chemistry, 2021, 296, 100476.	1.6	16
6	Multiheme hydroxylamine oxidoreductases produce NO during ammonia oxidation in methanotrophs. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24459-24463.	3.3	25
7	Diversity, enrichment, and genomic potential of anaerobic methane- and ammonium-oxidizing microorganisms from a brewery wastewater treatment plant. Applied Microbiology and Biotechnology, 2020, 104, 7201-7212.	1.7	9
8	Complexome analysis of the nitrite-dependent methanotroph Methylomirabilis lanthanidiphila. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 734-744.	0.5	18
9	A nitric oxide–binding heterodimeric cytochrome c complex from the anammox bacterium Kuenenia stuttgartiensis binds to hydrazine synthase. Journal of Biological Chemistry, 2019, 294, 16712-16728.	1.6	16
10	Discovery of a functional, contracted heme-binding motif within a multiheme cytochrome. Journal of Biological Chemistry, 2019, 294, 16953-16965.	1.6	24
11	Interactions of anaerobic ammonium oxidizers and sulfide-oxidizing bacteria in a substrate-limited model system mimicking the marine environment. FEMS Microbiology Ecology, 2019, 95, .	1.3	11
12	Interactions between anaerobic ammonium- and methane-oxidizing microorganisms in a laboratory-scale sequencing batch reactor. Applied Microbiology and Biotechnology, 2019, 103, 6783-6795.	1.7	26
13	A 192-heme electron transfer network in the hydrazine dehydrogenase complex. Science Advances, 2019, 5, eaav4310.	4.7	47
14	Nitric oxide-dependent anaerobic ammonium oxidation. Nature Communications, 2019, 10, 1244.	5.8	103
15	Key Physiology of a Nitrite-Dependent Methane-Oxidizing Enrichment Culture. Applied and Environmental Microbiology, 2019, 85, .	1.4	39
16	A 60-heme reductase complex from an anammox bacterium shows an extended electron transfer pathway. Acta Crystallographica Section D: Structural Biology, 2019, 75, 333-341.	1.1	7
17	Current perspectives on the application of N-damo and anammox in wastewater treatment. Current Opinion in Biotechnology, 2018, 50, 222-227.	3.3	88
18	The microbial nitrogen-cycling network. Nature Reviews Microbiology, 2018, 16, 263-276.	13.6	2,269

#	Article	IF	CITATIONS
19	Community Composition and Ultrastructure of a Nitrate-Dependent Anaerobic Methane-Oxidizing Enrichment Culture. Applied and Environmental Microbiology, 2018, 84, .	1.4	28
20	Comparative Genomics of Candidatus Methylomirabilis Species and Description of Ca. Methylomirabilis Lanthanidiphila. Frontiers in Microbiology, 2018, 9, 1672.	1.5	67
21	Iron assimilation and utilization in anaerobic ammonium oxidizing bacteria. Current Opinion in Chemical Biology, 2017, 37, 129-136.	2.8	113
22	Metagenomic analysis of anammox communities in three different microbial aggregates. Environmental Microbiology, 2016, 18, 2979-2993.	1.8	133
23	Anammox Biochemistry: a Tale of Heme c Proteins. Trends in Biochemical Sciences, 2016, 41, 998-1011.	3.7	203
24	Membrane-bound electron transport systems of an anammox bacterium: A complexome analysis. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1694-1704.	0.5	89
25	Archaea catalyze iron-dependent anaerobic oxidation of methane. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12792-12796.	3.3	470
26	Characterization of Anammox Hydrazine Dehydrogenase, a Key N2-producing Enzyme in the Global Nitrogen Cycle. Journal of Biological Chemistry, 2016, 291, 17077-17092.	1.6	103
27	Anammox Planctomycetes have a peptidoglycan cell wall. Nature Communications, 2015, 6, 6878.	5.8	194
28	Draft Genome Sequence of Anammox Bacterium "Candidatus Scalindua brodae,―Obtained Using Differential Coverage Binning of Sequencing Data from Two Reactor Enrichments. Genome Announcements, 2015, 3, .	0.8	46
29	Immunogold Localization of Key Metabolic Enzymes in the Anammoxosome and on the Tubule-Like Structures of Kuenenia stuttgartiensis. Journal of Bacteriology, 2015, 197, 2432-2441.	1.0	52
30	The inner workings of the hydrazine synthase multiprotein complex. Nature, 2015, 527, 394-397.	13.7	131
31	Complete nitrification by a single microorganism. Nature, 2015, 528, 555-559.	13.7	1,336
32	Iron-Mediated Anaerobic Oxidation of Methane in Brackish Coastal Sediments. Environmental Science & En	4.6	230
33	Isolation and characterization of a prokaryotic cell organelle from the anammox bacterium <scp><i>K</i></scp> <i>uenenia stuttgartiensis</i>	1.2	72
34	Structural Basis of Biological NO Generation by Octaheme Oxidoreductases. Journal of Biological Chemistry, 2014, 289, 1228-1242.	1.6	87
35	Interactions between anaerobic ammonium and sulfurâ€oxidizing bacteria in a laboratory scale model system. Environmental Microbiology, 2014, 16, 3487-3498.	1.8	81
36	High specific activity for anammox bacteria enriched from activated sludge at 10 ${\rm \hat{A}}^{\circ}{\rm C}$. Bioresource Technology, 2014, 163, 214-221.	4.8	117

#	Article	IF	Citations
37	Simultaneous partial nitritation and anammox at low temperature with granular sludge. Water Research, 2014, 66, 111-121.	5.3	244
38	Application of the Anammox Process. , 2014, , 237-263.		3
39	The metagenome of the marine anammox bacterium â€~ <i>Candidatus</i> Scalindua profunda' illustrates the versatility of this globally important nitrogen cycle bacterium. Environmental Microbiology, 2013, 15, 1275-1289.	1.8	246
40	Nitrogen removal with the anaerobic ammonium oxidation process. Biotechnology Letters, 2013, 35, 1145-1154.	1.1	70
41	Lysozyme and Penicillin Inhibit the Growth of Anaerobic Ammonium-Oxidizing Planctomycetes. Applied and Environmental Microbiology, 2013, 79, 7763-7769.	1.4	39
42	Nitrogen isotope effects induced by anammox bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18994-18999.	3.3	174
43	How to make a living from anaerobic ammonium oxidation. FEMS Microbiology Reviews, 2013, 37, 428-461.	3.9	433
44	Enrichment of an anammox bacterial community from a flooded paddy soil. Environmental Microbiology Reports, 2013, 5, 483-489.	1.0	41
45	Presence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin. Frontiers in Microbiology, 2013, 4, 219.	1.5	41
46	Nitrogen Removal by a Nitritation-Anammox Bioreactor at Low Temperature. Applied and Environmental Microbiology, 2013, 79, 2807-2812.	1.4	258
47	Rapid and Simple Cryopreservation of Anaerobic Ammonium-Oxidizing Bacteria. Applied and Environmental Microbiology, 2012, 78, 3010-3013.	1.4	42
48	Effects of Nitrogen Dioxide and Anoxia on Global Gene and Protein Expression in Long-Term Continuous Cultures of Nitrosomonas eutropha C91. Applied and Environmental Microbiology, 2012, 78, 4788-4794.	1.4	15
49	Hydrazine Synthase, a Unique Phylomarker with Which To Study the Presence and Biodiversity of Anammox Bacteria. Applied and Environmental Microbiology, 2012, 78, 752-758.	1.4	228
50	The metagenomic basis of anammox metabolism in Candidatus †Brocadia fulgida†M. Biochemical Society Transactions, 2012, 40, 295-295.	1.6	2
51	Anammoxâ€"Growth Physiology, Cell Biology, and Metabolism. Advances in Microbial Physiology, 2012, 60, 211-262.	1.0	175
52	Genome analysis and heterologous expression of acetate-activating enzymes in the anammox bacterium Kuenenia stuttgartiensis. Archives of Microbiology, 2012, 194, 943-948.	1.0	23
53	Molecular mechanism of anaerobic ammonium oxidation. Nature, 2011, 479, 127-130.	13.7	707
54	The metagenomic basis of anammox metabolism in <i>Candidatus</i> â€~Brocadia fulgida'. Biochemical Society Transactions, 2011, 39, 1799-1804.	1.6	110

#	Article	IF	CITATIONS
55	Combined anaerobic ammonium and methane oxidation for nitrogen and methane removal. Biochemical Society Transactions, 2011, 39, 1822-1825.	1.6	54
56	Proteins and protein complexes involved in the biochemical reactions of anaerobic ammonium-oxidizing bacteria. Biochemical Society Transactions, 2011, 39, 303-308.	1.6	49
57	Cultivation, Detection, and Ecophysiology of Anaerobic Ammonium-Oxidizing Bacteria. Methods in Enzymology, 2011, 486, 89-108.	0.4	72
58	Liquid Chromatographyâ€"Mass Spectrometry-Based Proteomics of Nitrosomonas. Methods in Enzymology, 2011, 486, 465-482.	0.4	23
59	New Anaerobic, Ammonium-Oxidizing Community Enriched from Peat Soil. Applied and Environmental Microbiology, 2011, 77, 966-971.	1.4	100
60	Simultaneous Nitrite-Dependent Anaerobic Methane and Ammonium Oxidation Processes. Applied and Environmental Microbiology, 2011, 77, 6802-6807.	1.4	147
61	Denitrification at pH 4 by a soilâ€derived <i>Rhodanobacter</i> â€dominated community. Environmental Microbiology, 2010, 12, 3264-3271.	1.8	95
62	Effect of Nitric Oxide on Anammox Bacteria. Applied and Environmental Microbiology, 2010, 76, 6304-6306.	1.4	83
63	Identification and quantification of anammox bacteria in eight nitrogen removal reactors. Water Research, 2010, 44, 5014-5020.	5.3	161
64	Microbial and Physicochemical Characteristics of Compact Anaerobic Ammonium-Oxidizing Granules in an Upflow Anaerobic Sludge Blanket Reactor. Applied and Environmental Microbiology, 2010, 76, 2652-2656.	1.4	131
65	Presence and activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents. ISME Journal, 2009, 3, 117-123.	4.4	145
66	Biochemistry and molecular biology of anammox bacteria. Critical Reviews in Biochemistry and Molecular Biology, 2009, 44, 65-84.	2.3	441
67	Ladderane lipid distribution in four genera of anammox bacteria. Archives of Microbiology, 2008, 190, 51-66.	1.0	92
68	Candidatus â€Â~Brocadia fulgida': an autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiology Ecology, 2008, 63, 46-55.	1.3	388
69	A microdiversity study of anammox bacteria reveals a novel <i>Candidatus</i> Scalindua phylotype in marine oxygen minimum zones. Environmental Microbiology, 2008, 10, 3106-3119.	1.8	250
70	Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production. Environmental Microbiology, 2008, 10, 3120-3129.	1.8	231
71	Response of Anaerobic Ammonium-Oxidizing Bacteria to Hydroxylamine. Applied and Environmental Microbiology, 2008, 74, 4417-4426.	1.4	78
72	Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environmental Microbiology, 2007, 9, 635-642.	1.8	462

#	Article	lF	Citations
73	Candidatus "Anammoxoglobus propionicus―a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Systematic and Applied Microbiology, 2007, 30, 39-49.	1.2	511
74	Adaptation of a freshwater anammox population to high salinity wastewater. Journal of Biotechnology, 2006, 126, 546-553.	1.9	233
75	Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature, 2006, 440, 790-794.	13.7	1,075
76	Global impact and application of the anaerobic ammonium-oxidizing (anammox) bacteria. Biochemical Society Transactions, 2006, 34, 174-178.	1.6	77
77	Propionate Oxidation by and Methanol Inhibition of Anaerobic Ammonium-Oxidizing Bacteria. Applied and Environmental Microbiology, 2005, 71, 1066-1071.	1.4	353
78	Biomarkers for In Situ Detection of Anaerobic Ammonium-Oxidizing (Anammox) Bacteria. Applied and Environmental Microbiology, 2005, 71, 1677-1684.	1.4	325
79	Application, eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria. Reviews in Environmental Science and Biotechnology, 2004, 3, 255-264.	3.9	71
80	Metabolism and Genomics of Anammox Bacteria. , 0, , 179-200.		10
81	Methods To Study Consortia and Mixed Cultures. , 0, , 205-219.		4