
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9191780/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vitamin D in plants: a review of occurrence, analysis, and biosynthesis. Frontiers in Plant Science, 2013, 4, 136.	1.7	192
2	Food Contents and Biological Activity of 25-Hydroxyvitamin D: A Vitamin D Metabolite to Be Reckoned With?. Annals of Nutrition and Metabolism, 2003, 47, 107-113.	1.0	170
3	Bread Fortified with Cholecalciferol Increases the Serum 25-HydroxyvitaminD Concentration in Women as Effectively as a Cholecalciferol Supplement. Journal of Nutrition, 2006, 136, 123-127.	1.3	120
4	Stability of vitamin D in foodstuffs during cooking. Food Chemistry, 2014, 148, 170-175.	4.2	92
5	25-Hydroxyvitamin D3 affects vitamin D status similar to vitamin D3 in pigs – but the meat produced has a lower content of vitamin D. British Journal of Nutrition, 2007, 98, 908-913.	1.2	88
6	Randomized controlled trial of the effects of vitamin D–fortified milk and bread on serum 25-hydroxyvitamin D concentrations in families in Denmark during winter: the VitmaD study. American Journal of Clinical Nutrition, 2013, 98, 374-382.	2.2	85
7	Vitamin D metabolites in bovine milk and butter. Journal of Food Composition and Analysis, 2009, 22, 472-478.	1.9	69
8	Effects of vitamin D ₂ -fortified bread <i>v</i> . supplementation with vitamin D ₂ or D ₃ on serum 25-hydroxyvitamin D metabolites: an 8-week randomised-controlled trial in young adult Finnish women. British Journal of Nutrition, 2016, 115, 1232-1239.	1.2	69
9	A new method for the determination of vitamin D3 and 25-hydroxyvitamin D3 in meat. Journal of Food Composition and Analysis, 2004, 17, 777-787.	1.9	65
10	How Much Vitamin D ₃ Do the Elderly Need?. Journal of the American College of Nutrition, 2006, 25, 429-435.	1.1	64
11	Vitamin D Stored in Fat Tissue During a 5-Year Intervention Affects Serum 25-Hydroxyvitamin D Levels the Following Year. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3731-3738.	1.8	56
12	Microalgae Nannochloropsis oceanica as a future new natural source of vitamin D3. Food Chemistry, 2020, 320, 126627.	4.2	56
13	Vitamin D3 and 25-hydroxyvitamin D3 in raw and cooked pork cuts. Journal of Food Composition and Analysis, 2003, 16, 575-585.	1.9	55
14	Estimation of the dietary requirement for vitamin D in healthy adolescent white girls. American Journal of Clinical Nutrition, 2011, 93, 549-555.	2.2	53
15	Vitamin D–enhanced eggs are protective of wintertime serum 25-hydroxyvitamin D in a randomized controlled trial of adults,. American Journal of Clinical Nutrition, 2016, 104, 629-637.	2.2	47
16	The use of synthetic and natural vitamin D sources in pig diets to improve meat quality and vitamin D content. Meat Science, 2018, 143, 60-68.	2.7	46
17	Vitamin D ₃ and 25-hydroxyvitamin D ₃ in pork and their relationship to vitamin D status in pigs. Journal of Nutritional Science, 2016, 5, e3.	0.7	42
18	Impact on Vitamin D2, Vitamin D4 and Agaritine in Agaricus bisporus Mushrooms after Artificial and Natural Solar UV Light Exposure. Plant Foods for Human Nutrition, 2016, 71, 314-321.	1.4	39

#	Article	IF	CITATIONS
19	Stability of vitamin D3 and vitamin D2 in oil, fish and mushrooms after household cooking. Food Chemistry, 2018, 254, 144-149.	4.2	38
20	Increase of vitamin D ₂ by UV-B exposure during the growth phase of white button mushroom (<i>Agaricus bisporus</i>). Food and Nutrition Research, 2012, 56, 7114.	1.2	36
21	Vitamin D Binding Protein Genotype Is Associated with Serum 25-Hydroxyvitamin D and PTH Concentrations, as Well as Bone Health in Children and Adolescents in Finland. PLoS ONE, 2014, 9, e87292.	1.1	35
22	Effect of phylloquinone supplementation on biochemical markers of vitamin K status and bone turnover in postmenopausal women. British Journal of Nutrition, 2007, 97, 373-380.	1.2	33
23	Seasonal Variation of Provitamin D ₂ and Vitamin D ₂ in Perennial Ryegrass (<i>Lolium perenne</i> L.). Journal of Agricultural and Food Chemistry, 2011, 59, 10907-10912.	2.4	32
24	The effect of a high-protein, high-sodium diet on calcium and bone metabolism in postmenopausal women and its interaction with vitamin D receptor genotype. British Journal of Nutrition, 2004, 91, 41-51.	1.2	31
25	Quantification of physiological levels of vitamin D ₃ and 25-hydroxyvitamin D ₃ in porcine fat and liver in subgram sample sizes. Journal of Separation Science, 2014, 37, 2659-2663.	1.3	31
26	Investigation of the effect of UV-LED exposure conditions on the production of vitamin D in pig skin. Food Chemistry, 2016, 212, 386-391.	4.2	31
27	Analysis of vitamin K1 in fruits and vegetables using accelerated solvent extraction and liquid chromatography tandem mass spectrometry with atmospheric pressure chemical ionization. Food Chemistry, 2016, 192, 402-408.	4.2	30
28	Simultaneous quantification of vitamin D ₃ , 25-hydroxyvitamin D ₃ and 24,25-dihydroxyvitamin D ₃ in human serum by LC-MS/MS. Scandinavian Journal of Clinical and Laboratory Investigation, 2014, 74, 418-423.	0.6	27
29	Vitamin D Vitamers Affect Vitamin D Status Differently in Young Healthy Males. Nutrients, 2018, 10, 12.	1.7	27
30	Vitamin D in Wild and Farmed Atlantic Salmon (Salmo Salar)—What Do We Know?. Nutrients, 2019, 11, 982.	1.7	26
31	Quantification of vitamin D3 and its hydroxylated metabolites in waxy leaf nightshade (Solanum) Tj ETQq1 1 0.7 Chemistry, 2013, 138, 1206-1211.	84314 rgB ⁻ 4 . 2	T /Overlock 25
32	Vitamin D-fortified foods improve wintertime vitamin D status in women of Danish and Pakistani origin living in Denmark: a randomized controlled trial. European Journal of Nutrition, 2020, 59, 741-753.	1.8	25
33	Tissue content of vitamin D3 and 25-hydroxy vitamin D3 in minipigs after cutaneous synthesis, supplementation and deprivation of vitamin D3. Steroids, 2015, 98, 72-79.	0.8	24
34	Short communication: Artificial ultraviolet B light exposure increases vitamin D levels in cow plasma and milk. Journal of Dairy Science, 2015, 98, 6492-6498.	1.4	24
35	Interlaboratory Trial for Measurement of Vitamin D and 25-Hydroxyvitamin D [25(OH)D] in Foods and a Dietary Supplement Using Liquid Chromatography–Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2016, 64, 3167-3175.	2.4	23
36	Vitamin D enhanced pork from pigs exposed to artificial UVB light in indoor facilities. European Food Research and Technology, 2019, 245, 411-418.	1.6	23

#	Article	IF	CITATIONS
37	Nutrient content in plant-based protein products intended for food composition databases. Journal of Food Composition and Analysis, 2022, 106, 104332.	1.9	21
38	Vitamin D status assessed by a validated HPLC method: within and between variation in subjects supplemented with vitamin D ₃ . Scandinavian Journal of Clinical and Laboratory Investigation, 2009, 69, 190-197.	0.6	20
39	Vitamin D Status and Muscle Function Among Adolescent and Young Swimmers. International Journal of Sport Nutrition and Exercise Metabolism, 2017, 27, 399-407.	1.0	20
40	Vitamin D-biofortified beef: A comparison of cholecalciferol with synthetic versus UVB-mushroom-derived ergosterol as feed source. Food Chemistry, 2018, 256, 18-24.	4.2	19
41	Challenges to Quantify Total Vitamin Activity: How to Combine the Contribution of Diverse Vitamers?. Current Developments in Nutrition, 2019, 3, nzz086.	0.1	17
42	Naturally enhanced eggs as a source of vitamin D: A review. Trends in Food Science and Technology, 2020, 102, 62-70.	7.8	17
43	Quantification of folate in food using deconjugase of plant origin combined with LC-MS/MS: A method comparison of a large and diverse sample set. Food Chemistry, 2020, 305, 125450.	4.2	16
44	UVB exposure stimulates production of vitamin D3 in selected microalgae. Algal Research, 2021, 59, 102472.	2.4	15
45	Altered vitamin D status in liver tissue and blood plasma from Greenland sledge dogs (Canis) Tj ETQq1 1 0.784 blubber. Ecotoxicology and Environmental Safety, 2014, 104, 403-408.	314 rgBT /(2.9	Overlock 10 13
46	Vitamin K (phylloquinone and menaquinones) in foods – Optimisation of extraction, clean-up and LC–ESI-MS/MS method for quantification. Food Chemistry, 2021, 345, 128835.	4.2	13
47	Is high oily fish intake achievable and how does it affect nutrient status in 8–9-year-old children?: the FiSK Junior trial. European Journal of Nutrition, 2020, 59, 1205-1218.	1.8	11
48	Quantification of vitamin D3 and 25-hydroxyvitamin D3 in food – The impact of eluent additives and labelled internal standards on matrix effects in LC-MS/MS analysis. Food Chemistry, 2021, 357, 129588.	4.2	11
49	The use of a plant enzyme for rapid and sensitive analysis of naturally-occurring folates in food by liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 2019, 1594, 34-44.	1.8	9
50	Causes of Vitamin K Deficiency in Patients on Haemodialysis. Nutrients, 2020, 12, 2513.	1.7	8
51	Farmed Salmon and Farmed Rainbow Trout - Excellent Sources of Vitamin D?. Fisheries and Aquaculture Journal, 2017, 08, .	0.2	7
52	Fatty acids, carotenoids, and tocopherols from microalgae: targeting the accumulation by manipulating the light during growth. Journal of Applied Phycology, 2021, 33, 2783-2793.	1.5	7
53	Natural Vitamin D in Food: To What Degree Does 25â€Hydroxyvitamin D Contribute to the Vitamin D Activity in Food?. JBMR Plus, 2021, 5, e10453.	1.3	6
54	Content and Bioaccessibility of Vitamin K (Phylloquinone and Menaquinones) in Cheese. Foods, 2021, 10, 2938.	1.9	6

#	Article	IF	CITATIONS
55	Vitamin K (phylloquinone and menaquinones) in foods – Cost-effective quantification by LC-ESI-MS/MS. Food Chemistry, 2022, 385, 132672.	4.2	6
56	In vitro bioaccessibility of vitamin K (phylloquinone and menaquinones) in food and supplements assessed by INFOGEST 2.0 – vit K. Current Research in Food Science, 2022, 5, 306-312.	2.7	4
57	Encapsulation of L-5-methyltetrahydrofolate by electrospraying for food applications. Journal of Food Engineering, 2020, 277, 109901.	2.7	3
58	Effect of UVB light on vitamin D status in piglets and sows. Journal of Steroid Biochemistry and Molecular Biology, 2020, 200, 105637.	1.2	3
59	Vitamin D Levels in Sows from Five Danish Outdoor Herds. Animals, 2022, 12, 299.	1.0	3
60	Collaborative study: Quantification of total folate in food using an efficient single-enzyme extraction combined with LC-MS/MS. Food Chemistry, 2020, 333, 127447.	4.2	2
61	Bio-Fortified Pork Cracklings with UVB LED Tailored Content of Vitamin D3. Foods, 2022, 11, 726.	1.9	2