List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9191774/publications.pdf Version: 2024-02-01

		87843	128225
137	4,669	38	60
papers	citations	h-index	g-index
137	137	137	3742
all docs	docs citations	times ranked	citing authors

ΡΑΠΙ Δ ΜΟΝΤΑCΝΑ

#	Article	IF	CITATIONS
1	A general pattern of trade-offs between ecosystem resistance and resilience to tropical cyclones. Science Advances, 2022, 8, eabl9155.	4.7	26
2	Anthropogenic effects on the marine environment adjacent to Palmer Station, Antarctica. Antarctic Science, 2022, 34, 79-96.	0.5	8
3	Using epibenthic fauna as biomonitors of local marine contamination adjacent to McMurdo Station, Antarctica. Marine Pollution Bulletin, 2022, 178, 113621.	2.3	7
4	Subtropical estuarine carbon budget under various hydrologic extremes and implications on the lateral carbon exchange from tidal wetlands. Water Research, 2022, 217, 118436.	5.3	8
5	Timescales and Magnitude of Water Quality Change in Three Texas Estuaries Induced by Passage of Hurricane Harvey. Estuaries and Coasts, 2021, 44, 960-971.	1.0	16
6	Long-term changes in contamination and macrobenthic communities adjacent to McMurdo Station, Antarctica. Science of the Total Environment, 2021, 764, 142798.	3.9	9
7	Hydroclimatic variability drives submarine groundwater discharge and nutrient fluxes in an anthropogenically disturbed, semi-arid estuary. Science of the Total Environment, 2021, 755, 142574.	3.9	17
8	Oyster growth across a salinity gradient in a shallow, subtropical Gulf of Mexico estuary. Experimental Results, 2021, 2, .	0.2	2
9	Benthic Faunal Baselines in theÂGulf of Mexico: A Precursor to Evaluate Future Impacts. , 2020, , 96-108.		2
10	Deep-Sea Benthic Faunal Impacts and Community Evolution Before, During, and After the Deepwater Horizon Event. , 2020, , 355-373.		6
11	The effects of experimental oil-contaminated marine snow on meiofauna in a microcosm. Marine Pollution Bulletin, 2020, 150, 110656.	2.3	15
12	A Synthesis of Deep Benthic Faunal Impacts and Resilience Following the Deepwater Horizon Oil Spill. Frontiers in Marine Science, 2020, 7, .	1.2	17
13	How quickly will the offshore ecosystem recover from the 2010 Deepwater Horizon oil spill? Lessons learned from the 1979 lxtoc-1 oil well blowout. Ecological Indicators, 2020, 117, 106593.	2.6	12
14	The effect of the Deepwater Horizon oil spill on two ecosystem services in the Northern Gulf of Mexico. Environmental Modelling and Software, 2020, 133, 104793.	1.9	12
15	A Research Framework to Integrate Cross-Ecosystem Responses to Tropical Cyclones. BioScience, 2020, 70, 477-489.	2.2	33
16	The expanded footprint of the Deepwater Horizon oil spill in the Gulf of Mexico deep-sea benthos. PLoS ONE, 2020, 15, e0235167.	1.1	17
17	Linking Abiotic Variables with Macrofaunal and Meiofaunal Abundance and Community Structure Patterns on theÂGulf of Mexico Continental Slope. , 2020, , 109-131.		1
18	Water quality data from estuarine variable hydrologic flow regimes during frequent drought. Data in Brief, 2019, 25, 104178.	0.5	0

#	Article	IF	CITATIONS
19	The relationship between suspended solids and nutrients with variable hydrologic flow regimes. Regional Studies in Marine Science, 2019, 29, 100657.	0.4	21
20	Ecotoxicological benthic impacts of experimental oil-contaminated marine snow deposition. Marine Pollution Bulletin, 2019, 141, 164-175.	2.3	13
21	Evaluating the U.S. Estuary Restoration Act to inform restoration policy implementation: A case study focusing on oyster reef projects. Marine Policy, 2018, 91, 161-166.	1.5	21
22	Valuing Nature Waste Removal in the Offshore Environment Following the Deepwater Horizon Oil Spill. Frontiers in Marine Science, 2018, 5, .	1.2	3
23	Effect of hydrological variability on the biogeochemistry of estuaries across a regional climatic gradient. Limnology and Oceanography, 2018, 63, 2465-2478.	1.6	37
24	Macrobenthic infaunal communities associated with deepâ€sea hydrocarbon seeps in the northern Gulf of Mexico. Marine Ecology, 2018, 39, e12508.	0.4	9
25	Habitat assessment of a restored oyster reef in South Texas. Ecological Engineering, 2018, 122, 48-61.	1.6	20
26	MANAGING ENVIRONMENTAL FLOWS AND WATER RESOURCES. WIT Transactions on Ecology and the Environment, 2018, , .	0.0	3
27	Persistent impacts to the deep soft-bottom benthos one year after the Deepwater Horizon event. Integrated Environmental Assessment and Management, 2017, 13, 342-351.	1.6	27
28	Sediment quality benchmarks for assessing oilâ€related impacts to the deepâ€sea benthos. Integrated Environmental Assessment and Management, 2017, 13, 840-851.	1.6	14
29	Exceptionally high organic nitrogen concentrations in a semi-arid South Texas estuary susceptible to brown tide blooms. Estuarine, Coastal and Shelf Science, 2017, 188, 27-37.	0.9	44
30	Modeling the effect of water level on the Nueces Delta marsh community. Wetlands Ecology and Management, 2017, 25, 731-742.	0.7	7
31	Does reef structure affect oyster food resources? A stable isotope assessment. Marine Environmental Research, 2017, 127, 32-40.	1.1	12
32	Macrobenthic community structure in the deep Gulf of Mexico one year after the Deepwater Horizon blowout. Deep-Sea Research Part I: Oceanographic Research Papers, 2017, 127, 21-30.	0.6	26
33	Inorganic nitrogen release from sediment slurry of riverine and estuarine ecosystems located at different river regimes. Marine and Freshwater Research, 2017, 68, 1282.	0.7	2
34	Comparison of sampling methods for deepâ€sea infauna. Limnology and Oceanography: Methods, 2017, 15, 166-183.	1.0	31
35	Temporal patterns of Deepwater Horizon impacts on the benthic infauna of the northern Gulf of Mexico continental slope. PLoS ONE, 2017, 12, e0179923.	1.1	26
36	How Did the Deepwater Horizon Oil Spill Impact Deep-Sea Ecosystems?. Oceanography, 2016, 29, 182-195.	0.5	71

#	Article	IF	CITATIONS
37	Is Salinity Variability a Benthic Disturbance in Estuaries?. Estuaries and Coasts, 2016, 39, 967-980.	1.0	44
38	Benthic taxa as potential indicators of a deep-sea oil spill. Ecological Indicators, 2016, 71, 587-597.	2.6	38
39	The max bin regression method to identify maximum bioindicator responses to ecological drivers. Ecological Informatics, 2016, 36, 118-125.	2.3	3
40	Origin, composition and quality of suspended particulate organic matter in relation to freshwater inflow in a South Texas estuary. Estuarine, Coastal and Shelf Science, 2016, 170, 70-82.	0.9	42
41	Determining the effects of freshwater inflow on benthic macrofauna in the Caloosahatchee Estuary, Florida. Integrated Environmental Assessment and Management, 2016, 12, 529-539.	1.6	9
42	Long-Term Alkalinity Decrease and Acidification of Estuaries in Northwestern Gulf of Mexico. Environmental Science & Technology, 2015, 49, 3401-3409.	4.6	54
43	Impacts of droughts and low flows on estuarine water quality and benthic fauna. Hydrobiologia, 2015, 753, 111-129.	1.0	35
44	Distribution of two species of the genus Nototanais spp. (Tanaidacea) in Winter Quarters Bay and waters adjoining McMurdo Station, McMurdo Sound, Antarctica. Polar Biology, 2015, 38, 1623-1629.	0.5	2
45	Baseline nutrient dynamics in shallow well mixed coastal lagoon with seasonal harmful algal blooms and hypoxia formation. Marine Pollution Bulletin, 2015, 96, 456-462.	2.3	5
46	Variations in the release of silicate and orthophosphate along a salinity gradient: Do sediment composition and physical forcing have roles?. Estuarine, Coastal and Shelf Science, 2015, 157, 42-50.	0.9	16
47	Stakeholder Perceptions of Coastal Habitat Ecosystem Services. Estuaries and Coasts, 2015, 38, 67-80.	1.0	17
48	Effect of ecological group classification schemes on performance of the AMBI benthic index in US coastal waters. Ecological Indicators, 2015, 50, 99-107.	2.6	56
49	Community response of deep-sea soft-sediment metazoan meiofauna to the Deepwater Horizon blowout and oil spill. Marine Ecology - Progress Series, 2015, 528, 127-140.	0.9	65
50	Modeling inorganic nutrient distributions among hydrologic gradients using multivariate approaches. Ecological Informatics, 2014, 24, 35-46.	2.3	16
51	Meta-analysis of Ecopath models reveals secondary productivity patterns across the Gulf of Mexico. Ocean and Coastal Management, 2014, 100, 32-40.	2.0	11
52	Comparing performance of five nutrient phytoplankton zooplankton (NPZ) models in coastal lagoons. Ecological Modelling, 2014, 277, 13-26.	1.2	14
53	Hydrological Changes and Estuarine Dynamics. SpringerBriefs in Environmental Science, 2013, , .	0.3	46
54	The effects of opening an artificial tidal inlet on hydrography and estuarine macrofauna in Corpus Christi, Texas. Environmental Monitoring and Assessment, 2013, 185, 5917-5935.	1.3	1

#	Article	IF	CITATIONS
55	Role and Value of Nitrogen Regulation Provided by Oysters (Crassostrea virginica) in the Mission-Aransas Estuary, Texas, USA. PLoS ONE, 2013, 8, e65314.	1.1	67
56	Deep-Sea Benthic Footprint of the Deepwater Horizon Blowout. PLoS ONE, 2013, 8, e70540.	1.1	209
57	Assessment of Longitudinal Gradients in Nematode Communities in the Deep Northern Gulf of Mexico and Concordance with Benthic Taxa. International Journal of Oceanography, 2012, 2012, 1-15.	0.2	14
58	A Restoration Suitability Index Model for the Eastern Oyster (Crassostrea virginica) in the Mission-Aransas Estuary, TX, USA. PLoS ONE, 2012, 7, e40839.	1.1	52
59	Effects of climate-driven freshwater inflow variability on macrobenthic secondary production in Texas lagoonal estuaries: A modeling study. Ecological Modelling, 2012, 235-236, 67-80.	1.2	22
60	Deepâ€sea tardigrades in the northern Gulf of Mexico with a description of a new species of Coronarctidae (Tardigrada: Arthrotardigrada), <i>Coronarctus mexicus</i> . Journal of Zoological Systematics and Evolutionary Research, 2011, 49, 48-52.	0.6	13
61	The role of freshwater inflow in lagoons, rivers, and bays. Hydrobiologia, 2011, 667, 49-67.	1.0	75
62	Role of Flood Disturbance in Natural Oyster (Crassostrea virginica) Population Maintenance in an Estuary in South Texas, USA. Estuaries and Coasts, 2011, 34, 187-197.	1.0	89
63	Understanding and forecasting hypoxia using machine learning algorithms. Journal of Hydroinformatics, 2011, 13, 64-80.	1.1	10
64	Long-term trends in the response of benthic macrofauna to climate variability in the Lavaca-Colorado Estuary, Texas. Marine Ecology - Progress Series, 2011, 436, 67-80.	0.9	25
65	Temporal and spatial patterns of anthropogenic disturbance at McMurdo Station, Antarctica. Environmental Research Letters, 2010, 5, 034010.	2.2	61
66	Global Patterns and Predictions of Seafloor Biomass Using Random Forests. PLoS ONE, 2010, 5, e15323.	1.1	287
67	Freshwater Inflow Biotic Index (FIBI) for the Lavaca-Colorado Estuary, Texas. Environmental Bioindicators, 2009, 4, 153-169.	0.4	15
68	Long-term biological effects of coastal hypoxia in Corpus Christi Bay, Texas, USA. Journal of Experimental Marine Biology and Ecology, 2009, 381, S21-S30.	0.7	25
69	Implications of Colorado river (Texas, USA) freshwater inflow to benthic ecosystem dynamics: A modeling study. Estuarine, Coastal and Shelf Science, 2009, 83, 491-504.	0.9	25
70	Importance of CDOM Distribution and Photoreactivity in a Shallow Texas Estuary. Estuaries and Coasts, 2009, 32, 661-677.	1.0	28
71	Application of watershed analyses and ecosystem modeling to investigate land–water nutrient coupling processes in the Guadalupe Estuary, Texas. Ecological Informatics, 2009, 4, 243-253.	2.3	17
72	Socio-economic factors that impact the desire to protect freshwater flow in the Rio Grande, USA. ,		4

Socio-economic factors that impact the desire to protect freshwater flow in the Rio Grande, USA. , 2009, , . 72

#	Article	IF	CITATIONS
73	Role of science-based and adaptive management in allocating environmental flows to the Nueces Estuary, Texas, USA. WIT Transactions on Ecology and the Environment, 2009, , .	0.0	12
74	The Effects of a Dredge Excavation Pit on Benthic Macrofauna in Offshore Louisiana. Environmental Management, 2008, 41, 573-583.	1.2	14
75	Effects of methylmercury exposure on glutathione metabolism, oxidative stress, and chromosomal damage in captive-reared common loon (Gavia immer) chicks. Environmental Pollution, 2008, 156, 732-738.	3.7	40
76	Metazoan meiofauna biomass, grazing, and weight-dependent respiration in the Northern Gulf of Mexico deep sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 2607-2616.	0.6	37
77	Comparative biomass structure and estimated carbon flow in food webs in the deep Gulf of Mexico. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 2699-2711.	0.6	70
78	Meta-analysis of the relationship between salinity and molluscs in tidal river estuaries of southwest Florida, U.S.A. American Malacological Bulletin, 2008, 24, 101-115.	0.2	21
79	Benthic Indicators of the Initial Effect of Opening a Channel. Environmental Bioindicators, 2008, 3, 205-206.	0.4	2
80	Suitability of Using a Limited Number of Sampling Stations to Represent Benthic Habitats in Lavaca-Colorado Estuary, Texas. Environmental Bioindicators, 2008, 3, 156-171.	0.4	3
81	Comparing fixed-point and probabilistic sampling designs for monitoring the marine ecosystem near McMurdo Station, Ross Sea, Antarctica. Antarctic Science, 2008, 20, 471-484.	0.5	18
82	Spatial and temporal variability and drivers of net ecosystem metabolism in western Gulf of Mexico estuaries. Estuaries and Coasts, 2007, 30, 137-153.	1.0	42
83	Metazoan meiofauna abundance in relation to environmental variables in the northern Gulf of Mexico deep sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2006, 53, 1344-1362.	0.6	73
84	The effect of freshwater inflow on net ecosystem metabolism in Lavaca Bay, Texas. Estuarine, Coastal and Shelf Science, 2006, 68, 231-244.	0.9	57
85	Direct and indirect effects of hypoxia on benthos in Corpus Christi Bay, Texas, U.S.A Journal of Experimental Marine Biology and Ecology, 2006, 330, 119-131.	0.7	44
86	Spatial and bathymetric trends in Harpacticoida (Copepoda) community structure in the Northern Gulf of Mexico deep-sea. Journal of Experimental Marine Biology and Ecology, 2006, 330, 327-341.	0.7	63
87	Characterizing the role benthos plays in large coastal seas and estuaries: A modular approach. Journal of Experimental Marine Biology and Ecology, 2006, 330, 392-402.	0.7	21
88	Short-term succession dynamics of macrobenthos in a salinity-stressed estuary. Journal of Experimental Marine Biology and Ecology, 2005, 323, 57-69.	0.7	56
89	Status and Trends of Dissolved Oxygen in Corpus Christi Bay, Texas, U.S.A Environmental Monitoring and Assessment, 2005, 107, 297-311.	1.3	35
90	A semiâ€automated digital microphotographic approach to measure meiofaunal biomass. Limnology and Oceanography: Methods, 2004, 2, 181-190.	1.0	32

#	Article	IF	CITATIONS
91	Three new species of the genus Normanella Brady (Copepoda: Harpacticoida) from the Gulf of Mexico. Journal of Natural History, 2003, 37, 1219-1245.	0.2	9
92	Temporal Dynamics and Patterning of Meiofauna Community by Self-Organizing Artificial Neural Networks. Ocean and Polar Research, 2003, 25, 237-247.	0.3	6
93	Distinguishing between contaminant and reef effects on meiofauna near offshore hydrocarbon platforms in the Gulf of Mexico. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59, 1584-1592.	0.7	10
94	Freshwater inflow: Science, policy, management. Estuaries and Coasts, 2002, 25, 1243-1245.	1.7	67
95	Experimental river diversion for marsh enhancement. Estuaries and Coasts, 2002, 25, 1416-1425.	1.7	22
96	Downstream effects of restored freshwater inflow to Rincon Bayou, Nueces Delta, Texas, USA. Estuaries and Coasts, 2002, 25, 1448-1456.	1.7	33
97	Effect of restored freshwater inflow on macrofauna and meiofauna in upper Rincon Bayou, Texas, USA. Estuaries and Coasts, 2002, 25, 1436-1447.	1.7	87
98	EGYPTIAN INTERSTITIAL COPEPODA HARPACTICOIDA WITH THE DESCRIPTION OF TWO NEW SPECIES AND ONE NEW SUBSPECIES. Crustaceana, 2001, 74, 513-544.	0.1	10
99	Impact of stormâ€water outfalls on sediment quallity in corpus Christi Bay, Texas, USA. Environmental Toxicology and Chemistry, 2000, 19, 561-574.	2.2	31
100	Sublethal effects of Texas brown tide on Streblospio benedicti (Polychaeta) larvae. Journal of Experimental Marine Biology and Ecology, 2000, 248, 121-129.	0.7	21
101	IMPACT OF STORM-WATER OUTFALLS ON SEDIMENT QUALITY IN CORPUS CHRISTI BAY, TEXAS, USA. Environmental Toxicology and Chemistry, 2000, 19, 561.	2.2	25
102	Utilization of estuarine organic matter during growth and migration by juvenile brown shrimp Penaeus aztecus in a South Texas estuary. Marine Ecology - Progress Series, 2000, 199, 205-216.	0.9	45
103	Seasonal Hypoxia and Models of Benthic Response in a Texas Bay. Estuaries and Coasts, 1999, 22, 7.	1.7	120
104	Reduced genetic diversity in a meiobenthic copepod exposed to a xenobiotic. Journal of Experimental Marine Biology and Ecology, 1998, 222, 93-111.	0.7	32
105	Disruption of grazer populations as a contributing factor to the initiation of the Texas brown tide algal bloom. Limnology and Oceanography, 1997, 42, 1215-1222.	1.6	102
106	Modelling contaminant effects on deposit feeding nematodes near Gulf of Mexico production platforms. Ecological Modelling, 1997, 98, 151-162.	1.2	9
107	Small-Scale Spatial Variation of Macrobenthic Community Structure. Estuaries and Coasts, 1997, 20, 159.	1.7	109
108	Incorporation of brown tide into an estuarine food web. Marine Ecology - Progress Series, 1997, 152, 67-78.	0.9	19

#	Article	IF	CITATIONS
109	Implications for monitoring: study designs and interpretation of results. Canadian Journal of Fisheries and Aquatic Sciences, 1996, 53, 2629-2636.	0.7	36
110	Benthic infaunal long-term response to offshore production platforms in the Gulf of Mexico. Canadian Journal of Fisheries and Aquatic Sciences, 1996, 53, 2567-2588.	0.7	92
111	Loss of genetic diversity in Harpacticoida near offshore platforms. Marine Biology, 1996, 126, 271-282.	0.7	48
112	Effect of production and biomass of intertidal microphytobenthos on meiofaunal grazing rates. Journal of Experimental Marine Biology and Ecology, 1995, 185, 149-165.	0.7	101
113	Effects of impounding coastal salt marsh for mosquito control on microcrustacean populations. Hydrobiologia, 1994, 292-293, 497-503.	1.0	3
114	Variability of Dissolved Organic Carbon in Sediments of a Seagrass Bed and an Unvegetated Area within an Estuary in Southern Texas. Estuaries and Coasts, 1993, 16, 391.	1.7	19
115	Initial burial and subsequent degradation of sedimented phytoplankton: relative impact of macro- and meiobenthos. Journal of Experimental Marine Biology and Ecology, 1993, 166, 151-163.	0.7	24
116	Reproductive patterns in meiobenthic Harpacticoida (Crustacea, Copepoda) of the California continental shelf (Santa Maria Basin). Continental Shelf Research, 1993, 13, 723-739.	0.9	3
117	PHOTOSYNTHETIC RESPONSE OF NATURAL ASSEMBLAGES OF MARINE BENTHIC MICROALGAE TO SHORT-AND LONG-TERM VARIATIONS OF INCIDENT IRRADIANCE IN BAFFIN BAY, TEXAS1. Journal of Phycology, 1992, 28, 7-14.	1.0	59
118	The Effect of Freshwater Inflow on Meiofaunal and Macrofaunal Populations in the Guadalupe and Nueces Estuaries, Texas. Estuaries and Coasts, 1992, 15, 307.	1.7	144
119	Meiobenthic communities of the Santa Maria Basin on the California continental shelf. Continental Shelf Research, 1991, 11, 1355-1378.	0.9	14
120	The effect of freshwater inflow on meiofaunal consumption of sediment bacteria and microphytobenthos in San Antonio Bay, Texas, U.S.A Estuarine, Coastal and Shelf Science, 1991, 33, 529-547.	0.9	54
121	Monitoring long-term effects of offshore oil and gas development along the Southern California outer continental shelf and slope: Background environmental conditions in the Santa Maria Basin. Oil and Chemical Pollution, 1990, 6, 195-240.	0.1	19
122	Vertical distribution of microbial and meiofaunal populations in sediments of a natural coastal hydrocarbon seep. Journal of Marine Research, 1989, 47, 657-680.	0.3	64
123	Partitioning radiolabeled thymidine uptake by bacteria and meiofauna using metabolic blocks and poisons in benthic feeding studies. Marine Biology, 1988, 98, 101-110.	0.7	36
124	Meiofauna dispersal near natural petroleum seeps in the Santa Barbara channel: A recolonization experiment. Oil and Chemical Pollution, 1988, 4, 179-189.	0.1	10
125	Mierobial biogeochemistry and heterotrophy in sediments of a marine hydrocarbon seep. Limnology and Oceanography, 1988, 33, 1493-1513.	1.6	6
126	Microbial biogeochemistry and heterotrophy in sediments of a marine hydrocarbon seep. Limnology and Oceanography, 1988, 33, 1493-1513.	1.6	14

PAUL A MONTAGNA

#	Article	IF	CITATIONS
127	Temporal variability and the relationship between benthic meiofaunal and microbial populations of a natural coastal petroleum seep. Journal of Marine Research, 1987, 45, 761-789.	0.3	43
128	Meiofauna and chlorophyll associated with Beggiatoa mats of a natural submarine petroleum seep. Marine Environmental Research, 1985, 16, 231-242.	1.1	28
129	Reproductive success, xenobiotic contaminants and hepatic mixed-function oxidase (MFO) activity in Platichthys stellatus populations from San Francisco Bay. Marine Environmental Research, 1985, 17, 117-121.	1.1	36
130	Competition for dissolved glucose between meiobenthos and sediment microbes. Journal of Experimental Marine Biology and Ecology, 1984, 76, 177-190.	0.7	22
131	The relationship between abundances of meiofauna and their suspected microbial food (diatoms and) Tj ETQq1 I	0,784314	⊦rgβT /Over £03
132	Crustaceana, 1982, 42, 37-43.	0.1	14
133	Sampling Design and Enumeration Statistics for Bacteria Extracted from Marine Sediments. Applied and Environmental Microbiology, 1982, 43, 1366-1372.	1.4	112
134	Production of Dominant Emergent Vegetation and of Pool Algae on a Northern Massachusetts Salt Marsh. Bulletin of the Torrey Botanical Club, 1981, 108, 180.	0.6	14
135	Decomposition of Spartina alterniflora in Different Seasons and Habitats of a Northern Massachusetts Salt Marsh, and a Comparison with Other Atlantic Regions. Estuaries and Coasts, 1980,	1.7	39
	3, 61.		

137Cervinia langi n. sp. and Pseudocervinia magna (Copepoda: Harpacticoida) from the Beaufort Sea0.35(Alaska, U.S.A.). Transactions of the American Microscopical Society, 1979, 98, 77.