Hideaki Shiraishi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9191646/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sirolimus for epileptic seizures associated with focal cortical dysplasia type <scp>II</scp> . Annals of Clinical and Translational Neurology, 2022, 9, 181-192.	3.7	13
2	Burden of seizures and comorbidities in patients with epilepsy: a survey based on the tertiary hospitalâ€based Epilepsy Syndrome Registry in Japan. Epileptic Disorders, 2022, 24, 82-94.	1.3	1
3	Adrenal function during longâ€ŧerm ACTH therapy for patients with developmental and epileptic encephalopathy. Epilepsia Open, 2022, 7, 194-200.	2.4	2
4	Lacosamide monotherapy for the treatment of childhood epilepsy with centrotemporal spikes. Brain and Development, 2022, 44, 380-385.	1.1	3
5	Impact of <scp>COVID</scp> â€19 pandemic on epilepsy care in Japan: AÂnationalâ€level multicenter retrospective cohort study. Epilepsia Open, 2022, 7, 431-441.	2.4	7
6	Efficacy of perampanel for epileptic seizures and daily behavior in a patient with Leigh syndrome: A case report. Brain and Development, 2021, 43, 157-159.	1.1	3
7	Reply to the letter: "Perampanel may be beneficial in leigh syndrome by its anti-oxidative but not anti-epileptic effect― Brain and Development, 2021, 43, 361-362.	1.1	0
8	Efficacy of bezafibrate for preventing myopathic attacks in patients with very long-chain acyl-CoA dehydrogenase deficiency. Brain and Development, 2021, 43, 214-219.	1.1	5
9	Myocardial T ₁ -mapping and Extracellular Volume Quantification in Patients and Putative Carriers of Muscular Dystrophy: Early Experience. Magnetic Resonance in Medical Sciences, 2021, 20, 320-324.	2.0	1
10	Selective Eating in Autism Spectrum Disorder Leading to Kwashiorkor and Brain Edema. Pediatric Neurology, 2021, 116, 55-56.	2.1	1
11	Selective Eating in Autism Spectrum Disorder Leading to Hair Color Change. Pediatric Neurology, 2021, 120, 1-2.	2.1	1
12	Current medicoâ€psychoâ€social conditions of patients with West syndrome in Japan. Epileptic Disorders, 2021, 23, 579-589.	1.3	0
13	Chronic deep brain stimulation reduces cortical β-γ phase amplitude-coupling in patients with Parkinson's disease. Parkinsonism and Related Disorders, 2021, 89, 148-150.	2.2	2
14	Development of a reading difficulty questionnaire for adolescents in Japanese. Brain and Development, 2021, 43, 893-903.	1.1	1
15	Clinical factors affecting evoked magnetic fields in patients with Parkinson's disease. PLoS ONE, 2020, 15, e0232808.	2.5	2
16	Perampanel for nonepileptic myoclonus in Angelman syndrome. Brain and Development, 2020, 42, 389-392.	1.1	10
17	Clinical factors affecting evoked magnetic fields in patients with Parkinson's disease. , 2020, 15, e0232808.		0
18	Clinical factors affecting evoked magnetic fields in patients with Parkinson's disease. , 2020, 15,		0

e0232808.

HIDEAKI SHIRAISHI

#	Article	IF	CITATIONS
19	Clinical factors affecting evoked magnetic fields in patients with Parkinson's disease. , 2020, 15, e0232808.		0
20	Clinical factors affecting evoked magnetic fields in patients with Parkinson's disease. , 2020, 15, e0232808.		0
21	A Single-Arm Open-Label Clinical Trial on the Efficacy and Safety of Sirolimus for Epileptic Seizures Associated with Focal Cortical Dysplasia Type II: A Study Protocol. Kurume Medical Journal, 2019, 66, 115-120.	0.1	2
22	Advanced dynamic statistical parametric mapping with MEG in localizing epileptogenicity of the bottom of sulcus dysplasia. Clinical Neurophysiology, 2018, 129, 1182-1191.	1.5	7
23	Long-term follow up of an adult with alternating hemiplegia of childhood and a p.Gly755Ser mutation in the ATP1A3 gene. Brain and Development, 2018, 40, 226-228.	1.1	6
24	Efficacy of perampanel for controlling seizures and improving neurological dysfunction in a patient with dentatorubral-pallidoluysian atrophy (DRPLA). Epilepsy & Behavior Case Reports, 2017, 8, 44-46.	1.5	31
25	Movement-related cortical magnetic fields associated with self-paced tongue protrusion in humans. Neuroscience Research, 2017, 117, 22-27.	1.9	8
26	The Involvement of Sensory-motor Networks in Reflex Seizure. NMC Case Report Journal, 2017, 4, 127-130.	0.5	5
27	Remote <scp>MEG</scp> dipoles in focal cortical dysplasia at bottom of sulcus. Epilepsia, 2016, 57, 1169-1178.	5.1	21
28	Cortico-muscular synchronization by proprioceptive afferents from the tongue muscles during isometric tongue protrusion. Neurolmage, 2016, 128, 284-292.	4.2	16
29	Modulation of stimulus-induced 20-Hz activity for the tongue and hard palate during tongue movement in humans. Clinical Neurophysiology, 2016, 127, 698-705.	1.5	3
30	Somatosensory evoked magnetic fields following tongue and hard palate stimulation on the preferred chewing side. Journal of the Neurological Sciences, 2014, 347, 288-294.	0.6	8
31	Contralateral dominance of corticomuscular coherence for both sides of the tongue during human tongue protrusion: An MEG study. NeuroImage, 2014, 101, 245-255.	4.2	19
32	Source localization in magnetoencephalography to identify epileptogenic foci. Brain and Development, 2011, 33, 276-281.	1.1	12
33	Possible involvement of the tip of temporal lobe in Landau–Kleffner syndrome. Brain and Development, 2007, 29, 529-533.	1.1	16