
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9191258/publications.pdf Version: 2024-02-01

FLENA RDESIN

#	Article	IF	CITATIONS
1	Relative Role of Genetic Complement Abnormalities in Sporadic and Familial aHUS and Their Impact on Clinical Phenotype. Clinical Journal of the American Society of Nephrology: CJASN, 2010, 5, 1844-1859.	4.5	818
2	Genetics of HUS: the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. Blood, 2006, 108, 1267-1279.	1.4	652
3	Combined Complement Gene Mutations in Atypical Hemolytic Uremic Syndrome Influence Clinical Phenotype. Journal of the American Society of Nephrology: JASN, 2013, 24, 475-486.	6.1	308
4	Familial haemolytic uraemic syndrome and an MCP mutation. Lancet, The, 2003, 362, 1542-1547.	13.7	303
5	Complement factor H mutations and gene polymorphisms in haemolytic uraemic syndrome: the C-257T, the A2089G and the G2881T polymorphisms are strongly associated with the disease. Human Molecular Genetics, 2003, 12, 3385-3395.	2.9	291
6	Dynamics of complement activation in aHUS and how to monitor eculizumab therapy. Blood, 2014, 124, 1715-1726.	1.4	288
7	Outcome of Renal Transplantation in Patients with Non–Shiga Toxin–Associated Hemolytic Uremic Syndrome: Prognostic Significance of Genetic Background. Clinical Journal of the American Society of Nephrology: CJASN, 2006, 1, 88-99.	4.5	201
8	von Willebrand factor cleaving protease (ADAMTS13) is deficient in recurrent and familial thrombotic thrombocytopenic purpura and hemolytic uremic syndrome. Blood, 2002, 100, 778-785.	1.4	200
9	Liver-Kidney Transplantation to Cure Atypical Hemolytic Uremic Syndrome. Journal of the American Society of Nephrology: JASN, 2009, 20, 940-949.	6.1	154
10	Hemolytic Uremic Syndrome in Pregnancy and Postpartum. Clinical Journal of the American Society of Nephrology: CJASN, 2017, 12, 1237-1247.	4.5	146
11	Complement Factor H Mutation in Familial Thrombotic Thrombocytopenic Purpura with ADAMTS13 Deficiency and Renal Involvement. Journal of the American Society of Nephrology: JASN, 2005, 16, 1177-1183.	6.1	129
12	Complement gene variants determine the risk of immunoglobulin-associated MPGN and C3 glomerulopathy and predict long-term renal outcome. Molecular Immunology, 2016, 71, 131-142.	2.2	126
13	Mutations in <i>FN1</i> cause glomerulopathy with fibronectin deposits. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2538-2543.	7.1	125
14	Autosomal-dominant Alport syndrome: Natural history of a disease due to COL4A3 or COL4A4 gene. Kidney International, 2004, 65, 1598-1603.	5.2	124
15	Unbiased next generation sequencing analysis confirms the existence of autosomal dominant Alport syndrome in a relevant fraction of cases. Clinical Genetics, 2014, 86, 252-257.	2.0	121
16	A Novel Atypical Hemolytic Uremic Syndrome–Associated Hybrid CFHR1/CFH Gene Encoding a Fusion Protein That Antagonizes Factor H–Dependent Complement Regulation. Journal of the American Society of Nephrology: JASN, 2015, 26, 209-219.	6.1	89
17	Cluster Analysis Identifies Distinct Pathogenetic Patterns in C3 Glomerulopathies/Immune Complex–Mediated Membranoproliferative GN. Journal of the American Society of Nephrology: JASN, 2018, 29, 283-294.	6.1	89
18	Rituximab as pre-emptive treatment in patients with thrombotic thrombocytopenic purpura and evidence of anti-ADAMTS13 autoantibodies. Thrombosis and Haemostasis, 2009, 101, 233-238.	3.4	85

#	Article	IF	CITATIONS
19	In-vitro and in-vivo consequences of mutations in the von Willebrand factor cleaving protease ADAMTS13 in thrombotic thrombocytopenic purpura. Thrombosis and Haemostasis, 2006, 96, 454-464.	3.4	72
20	An ExÂVivo Test of Complement Activation on Endothelium for Individualized Eculizumab Therapy in Hemolytic Uremic Syndrome. American Journal of Kidney Diseases, 2019, 74, 56-72.	1.9	71
21	Successful Split Liver-Kidney Transplant for Factor H Associated Hemolytic Uremic Syndrome. Clinical Journal of the American Society of Nephrology: CJASN, 2009, 4, 201-206.	4.5	60
22	A novel nonsense mutation in the PKD1 gene (C3817T) is associated with autosomal dominant polycystic kidney disease (ADPKD) in a large three-generation Italian family. Human Molecular Genetics, 1995, 4, 1331-1335.	2.9	59
23	Atypical haemolytic uraemic syndrome with underlying glomerulopathies. A case series and a review of the literature. Nephrology Dialysis Transplantation, 2013, 28, 2246-2259.	0.7	59
24	Rituximab prevents recurrence of thrombotic thrombocytopenic purpura: a case report. Blood, 2005, 106, 925-928.	1.4	57
25	Interaction between Multimeric von Willebrand Factor and Complement: A Fresh Look to the Pathophysiology of Microvascular Thrombosis. Journal of Immunology, 2017, 199, 1021-1040.	0.8	56
26	Two Patients With History of STEC-HUS, Posttransplant Recurrence and Complement Gene Mutations. American Journal of Transplantation, 2013, 13, 2201-2206.	4.7	51
27	Characterization of a New DGKE Intronic Mutation in Genetically Unsolved Cases of Familial Atypical Hemolytic Uremic Syndrome. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 1011-1019.	4.5	47
28	C5 Convertase Blockade in Membranoproliferative Glomerulonephritis: A Single-Arm Clinical Trial. American Journal of Kidney Diseases, 2019, 74, 224-238.	1.9	45
29	Genetic analysis of the complement factor H related 5 gene in haemolytic uraemic syndrome. Molecular Immunology, 2007, 44, 1704-1708.	2.2	41
30	Autosomal dominant polycystic kidney disease (ADPKD) in an Italian family carrying a novel nonsense mutation and two missense changes in exons 44 and 45 of the PKD1 gene. , 1996, 65, 155-159.		40
31	Autosomal recessive Alport syndrome: an in-depth clinical and molecular analysis of five families. Nephrology Dialysis Transplantation, 2006, 21, 665-671.	0.7	40
32	Detection of mutations in human genes by a new rapid method: cleavage fragment length polymorphism analysis (CFLPA). Molecular and Cellular Probes, 1997, 11, 155-160.	2.1	36
33	Rare Functional Variants in Complement Genes and Anti-FH Autoantibodies-Associated aHUS. Frontiers in Immunology, 2019, 10, 853.	4.8	31
34	Postâ€ŧransplant recurrence of atypical hemolytic uremic syndrome in a patient with thrombomodulin mutation. Pediatric Transplantation, 2013, 17, E177-81.	1.0	23
35	A Case of Familial Glomerulopathy With Fibronectin Deposits Caused by the Y973C Mutation in Fibronectin. American Journal of Kidney Diseases, 2013, 61, 514-518.	1.9	22
36	In-vitro and in-vivo consequences of mutations in the von Willebrand factor cleaving protease ADAMTS13 in thrombotic thrombocytopenic purpura. Thrombosis and Haemostasis, 2006, 96, 454-64.	3.4	20

#	Article	IF	CITATIONS
37	A case of atypical hemolytic uremic syndrome due to anti-factor H antibody in a patient presenting with a factor XII deficiency identified two novel mutations. Clinical and Experimental Nephrology, 2011, 15, 269-274.	1.6	16
38	Membrano-proliferative glomerulonephritis, atypical hemolytic uremic syndrome, and a new complement factor H mutation: report of a case. Pediatric Nephrology, 2012, 27, 1995-1999.	1.7	15
39	Three novel mutations of thePKD1 gene in Italian families with autosomal dominant polycystic kidney disease. Human Mutation, 1997, 10, 164-167.	2.5	14
40	ADAMTS13 Secretion and Residual Activity among Patients with Congenital Thrombotic Thrombocytopenic Purpura with and without Renal Impairment. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 2002-2012.	4.5	12
41	Insights into the Effects of Complement Factor H on the Assembly and Decay of the Alternative Pathway C3 Proconvertase and C3 Convertase. Journal of Biological Chemistry, 2016, 291, 8214-8230a.	3.4	12
42	A new disease-causing mutation in the GAP-related domain of the NF1 gene. Human Molecular Genetics, 1993, 2, 1057-1059.	2.9	11
43	CFH and CFHR Copy Number Variations in C3 Glomerulopathy and Immune Complex-Mediated Membranoproliferative Glomerulonephritis. Frontiers in Genetics, 2021, 12, 670727.	2.3	11
44	Erroneous genetic risk assessment of Alport syndrome. Lancet, The, 1995, 346, 1237.	13.7	10
45	Rapid DNA-based prenatal diagnosis by genetic linkage in three families with Alport's syndrome. American Journal of Kidney Diseases, 1997, 30, 174-179.	1.9	9
46	Molecular Studies and an ex vivo Complement Assay on Endothelium Highlight the Genetic Complexity of Atypical Hemolytic Uremic Syndrome: The Case of a Pedigree With a Null CD46 Variant. Frontiers in Medicine, 2020, 7, 579418.	2.6	8
47	Congenital thrombotic thrombocytopenic purpura (cTTP) with two novel mutations. Pediatric Blood and Cancer, 2012, 59, 1296-1298.	1.5	6
48	Peripheral nervous system manifestations of Shiga toxin-producing E. coli-induced haemolytic uremic syndrome in children. Italian Journal of Pediatrics, 2021, 47, 181.	2.6	6
49	A common polymorphism in exon 46 of the human autosomal dominant polycystic kidney disease 1 gene (PKD1). Molecular and Cellular Probes, 1996, 10, 463-465.	2.1	5
50	Detection of two different nonsense mutations in exon 44 of the PKD1 gene in two unrelated Italian families with severe autosomal dominant polycystic kidney disease. Nephrology Dialysis Transplantation, 1996, 11, 10-12.	0.7	5
51	Successful long-term outcome after renal transplantation in a patient with atypical haemolytic uremic syndrome with combined membrane cofactor protein CD46 and complement factor I mutations. Pediatric Nephrology, 2013, 28, 1141-1144.	1.7	3
52	Case Report: Lipoprotein Glomerulopathy Complicated by Atypical Hemolytic Uremic Syndrome. Frontiers in Medicine, 2021, 8, 679048.	2.6	3
53	Hemolytic Uremic Syndrome in an Infant with Primary Hyperoxaluria Type II: An Unreported Clinical Association. Nephron, 2019, 142, 264-270.	1.8	2
54	Atypical hemolytic uremic syndrome with MCP mutations preceded by respiratory infection. CEN Case Reports, 2013, 2, 34-37.	0.9	1

#	Article	IF	CITATIONS
55	lgA nephropathy and atypical hemolytic uremic syndrome: a case series and a literature review. Journal of Nephrology, 2021, , 1.	2.0	1
56	Insights into the effects of complement factor H on the assembly and decay of the alternative pathway C3 proconvertase and C3 convertase Journal of Biological Chemistry, 2017, 292, 6094.	3.4	0
57	Unravelling the pathophysiology of C3C/IC-MPGN and how to predict disease progression and orient therapies. Molecular Immunology, 2017, 89, 178.	2.2	0
58	Interaction between multimeric VWF and complement: A fresh look to the pathophysiology of microvascular thrombosis. Molecular Immunology, 2017, 89, 133.	2.2	0