Ted M Pappenfus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9191129/publications.pdf Version: 2024-02-01

TED M DADDENEUS

#	Article	IF	CITATIONS
1	Halogen Interactions in Halogenated Oxindoles: Crystallographic and Computational Investigations of Intermolecular Interactions. Molecules, 2021, 26, 5487.	3.8	3
2	Developing a Portable Organic Solar Cell Kit Suitable for Students to Fabricate and Test Solar Cells in the Laboratory. Journal of Chemical Education, 2020, 97, 3751-3757.	2.3	12
3	Excited State Electron Transfer from Donorâ^ï€ System–Acceptor Dyes to ZnO Nanocrystals. Journal of Physical Chemistry C, 2020, 124, 15565-15573.	3.1	1
4	ProDOT-Assisted Isomerically Pure Indophenines. Journal of Organic Chemistry, 2019, 84, 11253-11257.	3.2	12
5	Exploration of the Direct Arylation Polymerization Method for the Practical Application of Conjugated Materials: Synthetic Scaleâ€Up, Solar Cell Performance, and Cost Analyses. Macromolecular Chemistry and Physics, 2018, 219, 1800272.	2.2	20
6	Benzodithiophene homopolymers via direct (hetero)arylation polymerization. Polymer Bulletin, 2018, 75, 5667-5675.	3.3	3
7	Crystal structure and Hirshfeld analysis of 2-(5-bromothiophen-2-yl)acetonitrile. Acta Crystallographica Section E: Crystallographic Communications, 2018, 74, 189-192.	0.5	2
8	Fingerprints of Through-Bond and Through-Space Exciton and Charge π-Electron Delocalization in Linearly Extended [2.2]Paracyclophanes. Journal of the American Chemical Society, 2017, 139, 3095-3105.	13.7	34
9	Oligomers of cyclopentadithiophene-vinylene in aromatic and quinoidal versions and redox species with intermediate forms. Chemical Science, 2017, 8, 8106-8114.	7.4	16
10	Effects of a phosphonate anchoring group on the excited state electron transfer rates from a terthiophene chromophore to a ZnO nanocrystal. Physical Chemistry Chemical Physics, 2017, 19, 24294-24303.	2.8	3
11	Synthesis, characterization, and electronic properties of a thermally-labile isoindigo. Journal of Molecular Structure, 2015, 1095, 96-99.	3.6	1
12	Synthesis and Electronic Properties of Oxidized Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophenes. Journal of Organic Chemistry, 2014, 79, 9408-9412.	3.2	17
13	Impact of the Synergistic Collaboration of Oligothiophene Bridges and Ruthenium Complexes on the Optical Properties of Dumbbellâ€Shaped Compounds. Chemistry - A European Journal, 2013, 19, 1476-1488.	3.3	9
14	Molecular tuning in highly fluorescent dithieno[3,2-b:2′,3′-d]pyrrole-based oligomers: effects of N-functionalization and terminal aryl unit. Physical Chemistry Chemical Physics, 2012, 14, 6101.	2.8	36
15	Organic Materials in the Undergraduate Laboratory: Microscale Synthesis and Investigation of a Donor–Acceptor Molecule. Journal of Chemical Education, 2012, 89, 1461-1465.	2.3	12
16	One-Pot Synthesis of 4,8-Dialkylbenzo[1,2-b:4,5-b']dithiophenes. Heterocycles, 2012, 85, 355.	0.7	10
17	Oligothiophene Tetracyanobutadienes: Alternative Donorâ^'Acceptor Architectures for Molecular and Polymeric Materials. Chemistry of Materials, 2011, 23, 823-831.	6.7	42
18	PBC-DFT Applied to Donorâ^'Acceptor Copolymers in Organic Solar Cells: Comparisons between Theoretical Methods and Experimental Data. Macromolecules, 2011, 44, 2354-2357.	4.8	32

TED M PAPPENFUS

#	Article	IF	CITATIONS
19	Understanding Optoelectronic Properties of Cyano-Terminated Oligothiophenes in the Context of Intramolecular Charge Transfer. Journal of Physical Chemistry B, 2011, 115, 10573-10585.	2.6	23
20	Enhanced Functionality for Donor–Acceptor Oligothiophenes by means of Inclusion of BODIPY: Synthesis, Electrochemistry, Photophysics, and Model Chemistry. Chemistry - A European Journal, 2011, 17, 498-507.	3.3	63
21	Comparison of Thiophene–Pyrrole Oligomers with Oligothiophenes: A Joint Experimental and Theoretical Investigation of Their Structural and Spectroscopic Properties. Chemistry - A European Journal, 2010, 16, 6866-6876.	3.3	27
22	Alternative syntheses and reactivity of platinum(II) terpyridyl acetonitrile complexes. Inorganica Chimica Acta, 2010, 363, 3214-3221.	2.4	13
23	Regiochemistry of Poly(3-hexylthiophene): Synthesis and Investigation of a Conducting Polymer. Journal of Chemical Education, 2010, 87, 522-525.	2.3	23
24	The Influence of Internal Charge Transfer on Nonradiative Decay in Substituted Terthiophenes. Journal of Physical Chemistry A, 2009, 113, 10202-10210.	2.5	21
25	Teaching Research: A Curriculum Model That Works. Journal of Chemical Education, 2009, 86, 940.	2.3	22
26	Wind to Ammonia: Electrochemical Processes in Room Temperature Ionic Liquids. ECS Transactions, 2009, 16, 89-93.	0.5	31
27	Reduced Band Gap Dithieno[3,2- <i>b</i> :2â€~,3â€~- <i>d</i>]pyrroles:  New n-Type Organic Materials via Unexpected Reactivity. Organic Letters, 2008, 10, 1553-1556.	4.6	60
28	Reverse Selectivity in <i>m</i> -CPBA Oxidation of Oligothiophenes to Sulfones. Organic Letters, 2007, 9, 3721-3724.	4.6	22
29	Synthesis and Catalytic Activity of Ruthenium–Indenylidene Complexes for Olefin Metathesis. Journal of Chemical Education, 2007, 84, 1998.	2.3	11
30	Exploration of Ground and Excited Electronic States of Aromatic and QuinoidS,S-Dioxide Terthiophenes. Complementary Systems for Enhanced Electronic Organic Materials. Journal of the American Chemical Society, 2006, 128, 10134-10144.	13.7	55
31	N- and P-Channel Transport Behavior in Thin Film Transistors Based on Tricyanovinyl-Capped Oligothiophenes. Journal of Physical Chemistry B, 2006, 110, 14590-14597.	2.6	63
32	Optical, Redox, and NLO Properties of Tricyanovinyl Oligothiophenes: Comparisons between Symmetric and Asymmetric Substitution Patterns. Chemistry - A European Journal, 2006, 12, 5458-5470.	3.3	37
33	Exploration of the electronic structure of dendrimerlike acetylene-bridged oligothiophenes by correlating Raman spectroscopy, electrochemistry, and theory. Journal of Chemical Physics, 2004, 120, 11874-11881.	3.0	10
34	Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials. Journal of the Electrochemical Society, 2004, 151, A209.	2.9	137
35	lonic conductivity of a poly(vinylpyridinium)/silver iodide solid polymer electrolyte system. Solid State lonics, 2004, 171, 41-44.	2.7	10
36	Spectroscopic and Theoretical Study of the Molecular and Electronic Structures of a Terthiophene-Based Quinodimethane. ChemPhysChem. 2004. 5. 529-539.	2.1	46

TED M PAPPENFUS

#	Article	IF	CITATIONS
37	Polyelectrolyte Composite Materials with LiPF[sub 6] and Tetraglyme. Electrochemical and Solid-State Letters, 2004, 7, A254.	2.2	2
38	Preparation and Characterization of π-Stacking Quinodimethane Oligothiophenes. Predicting Semiconductor Behavior and Bandwidths from Crystal Structures and Molecular Orbital Calculations. Journal of the American Chemical Society, 2004, 126, 15295-15308.	13.7	124
39	Nitro-Functionalized Oligothiophenes as a Novel Type of Electroactive Molecular Material:Â Spectroscopic, Electrochemical, and Computational Study. Journal of the American Chemical Society, 2003, 125, 2524-2534.	13.7	106
40	Synthesis and Characterization of Tricyanovinyl-Capped Oligothiophenes as Low-Band-Gap Organic Materialsâ€. Organic Letters, 2003, 5, 1535-1538.	4.6	68
41	Dinitro and Quinodimethane Derivatives of Terthiophene That Can Be Both Oxidized and Reduced. Crystal Structures, Spectra, and a Method for Analyzing Quinoid Contributions to Structure§. Journal of Organic Chemistry, 2002, 67, 6015-6024.	3.2	81
42	Synthesis and Characterization of Radial Oligothiophenes:  A New Class of Thiophene-Based Conjugated Homologues. Organic Letters, 2002, 4, 3043-3046.	4.6	46
43	Quinonoid Oligothiophenes as Electron-Donor and Electron-Acceptor Materials. A Spectroelectrochemical and Theoretical Study. Journal of the American Chemical Society, 2002, 124, 12380-12388.	13.7	109
44	A π-Stacking Terthiophene-Based Quinodimethane Is an n-Channel Conductor in a Thin Film Transistor. Journal of the American Chemical Society, 2002, 124, 4184-4185.	13.7	275
45	Synthesis, Spectroscopy, and Electrochemical Studies of Binuclear Tris-Bipyridine Ruthenium(II) Complexes with Oligothiophene Bridges. Inorganic Chemistry, 2001, 40, 6301-6307.	4.0	52