Chandrakant D Lokhande

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/919105/publications.pdf Version: 2024-02-01

		71102	82547
121	5,802	41	72
papers	citations	h-index	g-index
122 all docs	122 docs citations	122 times ranked	6108 citing authors

#	Article	IF	CITATIONS
1	Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method. Bulletin of Materials Science, 2004, 27, 85-111.	1.7	565
2	Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. Journal of Materials Chemistry, 2012, 22, 3044.	6.7	419
3	Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors. Electrochimica Acta, 2013, 92, 205-215.	5.2	226
4	Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors. Journal of Power Sources, 2013, 242, 687-698.	7.8	200
5	Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel. Scientific Reports, 2015, 5, 12454.	3.3	192
6	Temperature influence on morphological progress of Ni(OH)2 thin films and its subsequent effect on electrochemical supercapacitive properties. Journal of Materials Chemistry A, 2013, 1, 4793.	10.3	185
7	Supercapacitors Based on Flexible Substrates: An Overview. Energy Technology, 2014, 2, 325-341.	3.8	172
8	Flexible all-solid-state MnO2 thin films based symmetric supercapacitors. Electrochimica Acta, 2015, 165, 338-347.	5.2	135
9	Novel electrodes for supercapacitor: Conducting polymers, metal oxides, chalcogenides, carbides, nitrides, MXenes, and their composites with graphene. Journal of Alloys and Compounds, 2022, 893, 161998.	5.5	129
10	Temperature dependent surface morphological modifications of hexagonal WO3 thin films for high performance supercapacitor application. Electrochimica Acta, 2017, 224, 397-404.	5.2	102
11	Influence of electrodeposition modes on the supercapacitive performance of Co 3 O 4 electrodes. Energy, 2014, 64, 234-241.	8.8	99
12	Electrodeposition of Thin Film Semiconductors. Physica Status Solidi A, 1989, 111, 17-40.	1.7	97
13	Ionically conducting PVA–LiClO 4 gel electrolyte for high performance flexible solid state supercapacitors. Journal of Colloid and Interface Science, 2015, 460, 370-376.	9.4	89
14	Chemical synthesis of 3D copper sulfide with different morphologies for high performance supercapacitors application. RSC Advances, 2016, 6, 14844-14851.	3.6	79
15	Chemically deposited nano grain composed MoS2 thin films for supercapacitor application. Journal of Colloid and Interface Science, 2017, 496, 1-7.	9.4	79
16	Controlled Growth of CoS _{<i>x</i>} Nanostrip Arrays (CoS _{<i>x</i>} â€NSA) on Nickel Foam for Asymmetric Supercapacitors. Energy Technology, 2014, 2, 401-408.	3.8	75
17	Flexible Asymmetric Solid-State Supercapacitors by Highly Efficient 3D Nanostructured α-MnO ₂ and h-CuS Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 16636-16649.	8.0	74
18	Electrochemical performance of a portable asymmetric supercapacitor device based on cinnamon-like La ₂ Te ₃ prepared by a chemical synthesis route. RSC Advances, 2014, 4, 56332-56341.	3.6	70

#	Article	IF	CITATIONS
19	Big as well as light weight portable, Mn3O4 based symmetric supercapacitive devices: Fabrication, performance evaluation and demonstration. Electrochimica Acta, 2012, 80, 160-170.	5.2	69
20	Porous CuO nanosheet clusters prepared by a surfactant assisted hydrothermal method for high performance supercapacitors. RSC Advances, 2013, 3, 24099.	3.6	68
21	Supercapacitive activities of potentiodynamically deposited nanoflakes of cobalt oxide (Co3O4) thin film electrode. Journal of Colloid and Interface Science, 2013, 406, 225-230.	9.4	65
22	Polyaniline–polypyrrole nanograined composite via electrostatic adsorption for high performance electrochemical supercapacitors. Journal of Alloys and Compounds, 2013, 552, 240-247.	5.5	63
23	Controlled synthesis of hierarchical nanoflake structure of NiO thin film for supercapacitor application. Journal of Alloys and Compounds, 2018, 741, 549-556.	5.5	63
24	Bath temperature controlled phase stability of hierarchical nanoflakes CoS2 thin films for supercapacitor application. RSC Advances, 2016, 6, 40593-40601.	3.6	62
25	The synthesis of multifunctional porous honey comb-like La 2 O 3 thin film for supercapacitor and gas sensor applications. Journal of Colloid and Interface Science, 2016, 484, 51-59.	9.4	61
26	Facile synthesis of self-assembled WO3 nanorods for high-performance electrochemical capacitor. Journal of Alloys and Compounds, 2019, 770, 1130-1137.	5.5	61
27	Polyaniline–RuO ₂ composite for high performance supercapacitors: chemical synthesis and properties. RSC Advances, 2015, 5, 28687-28695.	3.6	60
28	Single-step hydrothermal synthesis of WO3-MnO2 composite as an active material for all-solid-state flexible asymmetric supercapacitor. International Journal of Hydrogen Energy, 2018, 43, 2869-2880.	7.1	60
29	Cobalt sulfide thin films for electrocatalytic oxygen evolution reaction and supercapacitor applications. Journal of Colloid and Interface Science, 2018, 532, 491-499.	9.4	60
30	Bendable All‣olid‣tate Asymmetric Supercapacitors based on MnO ₂ and Fe ₂ O ₃ Thin Films. Energy Technology, 2015, 3, 625-631.	3.8	59
31	Facile synthesis of hierarchical mesoporous weirds-like morphological MnO2 thin films on carbon cloth for high performance supercapacitor application. Journal of Colloid and Interface Science, 2017, 498, 202-209.	9.4	58
32	Asymmetric Supercapacitors based on Hybrid CuO@Reduced Graphene Oxide@Sponge versus Reduced Graphene Oxide@Sponge Electrodes. Energy Technology, 2015, 3, 168-176.	3.8	57
33	Alcohol mediated growth of α-MnO ₂ thin films from KMnO ₄ precursor for high performance supercapacitors. RSC Advances, 2014, 4, 61503-61513.	3.6	55
34	Hexagonal microrods architectured MoO3 thin film for supercapacitor application. Journal of Materials Science: Materials in Electronics, 2016, 27, 3312-3317.	2.2	54
35	High Performance All-Solid-State Asymmetric Supercapacitor Device Based on 3D Nanospheres of β-MnO ₂ and Nanoflowers of O-SnS. ACS Sustainable Chemistry and Engineering, 2018, 6, 787-802.	6.7	53
36	Novel chemical synthesis of polypyrrole thin film electrodes for supercapacitor application. European Polymer Journal, 2013, 49, 3734-3739.	5.4	50

#	Article	IF	CITATIONS
37	Chemical synthesis of PANI–TiO ₂ composite thin film for supercapacitor application. RSC Advances, 2015, 5, 68939-68946.	3.6	49
38	Enhanced electrochemical performance of monoclinic WO 3 thin film with redox additive aqueous electrolyte. Journal of Colloid and Interface Science, 2016, 483, 261-267.	9.4	48
39	Photoelectrochemical (PEC) studies on Cu2SnS3 (CTS) thin films deposited by chemical bath deposition method. Journal of Colloid and Interface Science, 2017, 506, 144-153.	9.4	48
40	Fabrication of a High-Performance Hybrid Supercapacitor Based on Hydrothermally Synthesized Highly Stable Cobalt Manganese Phosphate Thin Films. Langmuir, 2021, 37, 5260-5274.	3.5	48
41	Electrochemical Characterization of Chemically Synthesized Polythiophene Thin Films: Performance of Asymmetric Supercapacitor Device. Electroanalysis, 2014, 26, 2023-2032.	2.9	46
42	Chemically prepared La2Se3 nanocubes thin film for supercapacitor application. Journal of Colloid and Interface Science, 2016, 469, 318-324.	9.4	38
43	A green synthesis method for large area silver thin film containing nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 2014, 136, 19-25.	3.8	37
44	Ultrathin nickel sulfide nano-flames as an electrode for high performance supercapacitor; comparison of symmetric FSS-SCs and electrochemical SCs device. RSC Advances, 2016, 6, 68388-68401.	3.6	37
45	Synthesis of hydrous cobalt phosphate electro-catalysts by a facile hydrothermal method for enhanced oxygen evolution reaction: effect of urea variation. CrystEngComm, 2019, 21, 884-893.	2.6	37
46	Synthesis and characterization of photosensitive TiO2 nanorods by controlled precipitation route. Journal of Materials Science, 2011, 46, 2288-2293.	3.7	35
47	Supercapacitive properties of nanoporous oxide layer formed on 304 type stainless steel. Journal of Colloid and Interface Science, 2016, 473, 22-27.	9.4	35
48	Electrochemical properties of chemically synthesized SnO2-RuO2 mixed films. Materials for Renewable and Sustainable Energy, 2019, 8, 1.	3.6	35
49	Chemically Synthesized Cu ₃ Se ₂ Film Based Flexible Solid-State Symmetric Supercapacitor: Effect of Reaction Bath Temperature. Journal of Physical Chemistry C, 2020, 124, 28395-28406.	3.1	35
50	Characterization of chemically deposited nanocrystalline PbS thin films. Journal of Materials Science, 2006, 41, 5723-5725.	3.7	34
51	Nanoflakeâ€Modulated La ₂ Se ₃ Thin Films Prepared for an Asymmetric Supercapacitor Device. ChemPlusChem, 2015, 80, 1478-1487.	2.8	34
52	Chemical synthesis and supercapacitive properties of lanthanum telluride thin film. Journal of Colloid and Interface Science, 2017, 490, 147-153.	9.4	34
53	Sprayed zinc oxide films: Ultra-violet light-induced reversible surface wettability and platinum-sensitization-assisted improved liquefied petroleum gas response. Journal of Colloid and Interface Science, 2016, 480, 109-117.	9.4	33
54	Amperometric CO2 gas sensor based on interconnected web-like nanoparticles of La2O3 synthesized by ultrasonic spray pyrolysis. Mikrochimica Acta, 2017, 184, 3713-3720.	5.0	33

#	Article	IF	CITATIONS
55	Enhanced energy density of flexible asymmetric solid state supercapacitor device fabricated with amorphous thin film electrode materials. Journal of Physics and Chemistry of Solids, 2020, 141, 109425.	4.0	33
56	Chemical Methods for the Deposition of Thin Films of Bi2 S 3. Journal of the Electrochemical Society, 1988, 135, 1852-1853.	2.9	32
57	Supercapacitive performance of hydrous ruthenium oxide (RuO2 · nH2O) thin films synthesized by chemical route at low temperature. Bulletin of Materials Science, 2013, 36, 1171-1176.	1.7	32
58	Highly sensitive CO ₂ sensor based on microrods-like La ₂ O ₃ thin film electrode. RSC Advances, 2016, 6, 106074-106080.	3.6	32
59	Supercapacitive performance of hydrous ruthenium oxide (RuO2·nH2O) thin films deposited by SILAR method. Journal of Materials Science, 2012, 47, 1546-1553.	3.7	31
60	Highly energetic flexible all-solid-state asymmetric supercapacitor with Fe ₂ O ₃ and CuO thin films. RSC Advances, 2016, 6, 58839-58843.	3.6	31
61	New design of all-solid state asymmetric flexible supercapacitor with high energy storage and long term cycling stability using m-CuO/FSS and h-CuS/FSS electrodes. Electrochimica Acta, 2019, 307, 30-42.	5.2	31
62	Facile synthesis of layered reduced graphene oxide–copper sulfide (rGO-CuS) hybrid electrode for all solid-state symmetric supercapacitor. Journal of Solid State Electrochemistry, 2020, 24, 2963-2974.	2.5	31
63	Amorphous cobalt-manganese sulfide electrode for efficient water oxidation: Meeting the fundamental requirements of an electrocatalyst. Chemical Engineering Journal, 2021, 405, 126993.	12.7	31
64	The implementation of graphene-based aerogel in the field of supercapacitor. Nanotechnology, 2021, 32, 362001.	2.6	30
65	Layer-by-layer nanohybrids of Ni-Cr-LDH intercalated with 0D polyoxotungstate for highly efficient hybrid supercapacitor. Journal of Colloid and Interface Science, 2022, 616, 548-559.	9.4	30
66	Metal Oxide-Based Composites in Nonenzymatic Electrochemical Glucose Sensors. Industrial & Engineering Chemistry Research, 2021, 60, 18195-18217.	3.7	30
67	Facile synthesis of Cu2SnS3 thin films grown by SILAR method: effect of film thickness. Journal of Materials Science: Materials in Electronics, 2017, 28, 7912-7921.	2.2	29
68	Fabrication of high performance flexible all-solid-state asymmetric supercapacitors with a three dimensional disc-like WO ₃ /stainless steel electrode. RSC Advances, 2016, 6, 113442-113451.	3.6	26
69	Chemical synthesis and characterization of hydrous tin oxide (SnO 2 :H 2 O) thin films. Bulletin of Materials Science, 2011, 34, 1179-1183.	1.7	25
70	Synthesis and characterizations of CdS nanorods by SILAR method: effect of film thickness. Journal of Materials Science, 2011, 46, 5009-5015.	3.7	24
71	Polyaniline/Cu2ZnSnS4 heterojunction based room temperature LPG sensor. Journal of Materials Science: Materials in Electronics, 2016, 27, 7505-7508.	2.2	24
72	Electrodeposition of ZnS Films from an Alkaline Bath. Journal of the Electrochemical Society, 1989, 136, 2756-2758.	2.9	23

#	Article	IF	CITATIONS
73	Thickness dependent photoelectrochemical cells performance of CdSe and HgS thin films. Journal of Materials Science, 2005, 40, 2635-2637.	3.7	22
74	Influence of deposition temperature on the structural, morphological, optical and photoelectrochemical properties of CBD deposited Cu2SnS3 thin films. Journal of Alloys and Compounds, 2020, 831, 154768.	5.5	22
75	Bath temperature impact on morphological evolution of Ni(OH)2 thin films and their supercapacitive behaviour. Bulletin of Materials Science, 2014, 37, 27-33.	1.7	19
76	Synthesis and characterization of polypyrrole thin film by MW-CBD method for NH3 gas sensor. Polymer Bulletin, 2018, 75, 4547-4553.	3.3	18
77	Photoelectrochemical Studies on Electrodeposited Cd–Fe–Se Thin Films. Physica Status Solidi A, 1999, 172, 415-423.	1.7	17
78	Electrodeposited heterojunctions based on cadmium chalcogenide, CdX (XÂ=ÂS, Se, Te) and polyaniline. Journal of Materials Science, 2007, 42, 1304-1308.	3.7	17
79	Chemically synthesized 3D nanostructured polypyrrole electrode for high performance supercapacitor applications. Journal of Materials Science: Materials in Electronics, 2018, 29, 15699-15707.	2.2	17
80	Recent Advancements in Energy Storage Based on Sodium Ion and Zinc Ion Hybrid Supercapacitors. Energy & Fuels, 2021, 35, 14241-14264.	5.1	17
81	Amorphous nickel tungstate films prepared by SILAR method for electrocatalytic oxygen evolution reaction. Journal of Colloid and Interface Science, 2022, 609, 734-745.	9.4	17
82	Electrodeposition of Cdâ€Biâ€S and Cdâ€Znâ€S Films. Journal of the Electrochemical Society, 1991, 138, 624-62	6.2.9	16
83	Synthesis and studies on effect of indium doping on physical properties of electrodeposited CdSe thin films. Journal of Materials Science: Materials in Electronics, 2017, 28, 3140-3150.	2.2	16
84	Lanthanum sulfide/graphene oxide composite thin films and their supercapacitor application. SN Applied Sciences, 2019, 1, 1.	2.9	16
85	Mesoporous Nanohybrids of 2D Niâ€Cr‣ayered Double Hydroxide Nanosheets Pillared with Polyoxovanadate Anions for Highâ€Performance Hybrid Supercapacitor. Advanced Materials Interfaces, 2022, 9, 2101216.	3.7	16
86	Chemical synthesis of nano-grained ytterbium sulfide thin films for supercapacitor application. Applied Nanoscience (Switzerland), 2020, 10, 5085-5097.	3.1	15
87	MnS2/carbon nanotube electrode for improved supercapacitor performance. Solid State Sciences, 2021, 111, 106449.	3.2	15
88	Electrochemical behavior of chemically synthesized selenium thin film. Journal of Colloid and Interface Science, 2016, 469, 257-262.	9.4	14
89	Chemically deposited TiO2/CdS bilayer system for photoelectrochemical properties. Bulletin of Materials Science, 2012, 35, 1181-1186.	1.7	13
90	Influence of surfactant on the morphology and supercapacitive behavior of SILAR-deposited polyaniline thin films. Ionics, 2015, 21, 191-200.	2.4	13

#	Article	lF	CITATIONS
91	Photo-electrochemical studies of chemically deposited nanocrystalline meso-porous n-type TiO2 thin films for dye-sensitized solar cell (DSSC) using simple synthesized azo dye. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	13
92	Modification in supercapacitive behavior of CoO-rGO composite thin film from exposure to ferri/ferrocyanide redox active couple. Journal of Colloid and Interface Science, 2018, 522, 111-119.	9.4	13
93	Electrochemical behavior of hydrothermally synthesized porous groundnuts-like samarium oxide thin films. SN Applied Sciences, 2020, 2, 1.	2.9	13
94	Strategically Tuned Ultrathin Nickel Phosphate Nanosheet Thin-Film Electrode as Cathode for High-Power Hybrid Supercapacitor Device. Energy & Fuels, 2021, 35, 14110-14121.	5.1	13
95	Hydrothermal synthesis of nanostructured β-LaS2 thin films. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	12
96	Vertically Aligned Nanosheets of an Electrodeposited Lanthanum Oxide Electrode for Non-Enzymatic Glucose Sensing Application. Journal of Electronic Materials, 2021, 50, 675-685.	2.2	12
97	The electrochemical performance of electrodeposited chitosan bio-nanopolymer in non-aqueous electrolyte: a new anodic material for supercapacitor. SN Applied Sciences, 2019, 1, 1.	2.9	11
98	Hydrothermally synthesized monoclinic Yb2S3 thin films for supercapacitive application. Journal of Materials Science: Materials in Electronics, 2018, 29, 14116-14121.	2.2	10
99	Binderâ€Free Synthesis of Mesoporous Nickel Tungstate for Aqueous Asymmetric Supercapacitor Applications: Effect of Film Thickness. Energy Technology, 2022, 10, .	3.8	10
100	Supercapacitive performance of chemically synthesized polypyrrole thin films: effect of monomer to oxidant ratio. Journal of Materials Science: Materials in Electronics, 2014, 25, 2188-2198.	2.2	9
101	CO2 gas sensing properties of La2O3 thin films deposited at various substrate temperatures. Journal of Materials Science: Materials in Electronics, 2017, 28, 13112-13119.	2.2	9
102	Chemically deposited Co3S4 thin film: morphology dependant electrocatalytic oxygen evolution reaction. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	9
103	Reliable glucose sensing properties of electrodeposited vertically aligned manganese oxide thin film electrode. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	9
104	SILAR synthesized nanostructured ytterbium sulfide thin film electrodes for symmetric supercapacitors. Journal of Solid State Electrochemistry, 2021, 25, 1753-1764.	2.5	9
105	Sulfur-Doped Graphene as a Rational Anode for an Ionic Liquid Based Hybrid Capacitor with a 3.5 V Working Window. Energy & Fuels, 2022, 36, 2799-2810.	5.1	8
106	Studies on iron-chromium redox storage system. Bulletin of Materials Science, 1988, 10, 367-372.	1.7	7
107	Growth of polyaniline nanofibers for supercapacitor applications using successive ionic layer adsorption and reaction (SILAR) method. Journal of the Korean Physical Society, 2014, 65, 80-86.	0.7	7
108	Studies on Electrochemical Photovoltaic Cells Formed with Bi2CdS4 Film Electrodes. Journal of the Electrochemical Society, 1985, 132, 261-263.	2.9	6

#	Article	IF	CITATIONS
109	Chemically deposited cubic structured CdO thin films: Room temperature. AIP Conference Proceedings, 2013, , .	0.4	6
110	Rational La-doped hematite as an anode and hydrous cobalt phosphate as a battery-type electrode for a hybrid supercapacitor. Dalton Transactions, 2022, 51, 6378-6389.	3.3	6
111	Studies on modulated physical and photoelectrochemical properties of CdSe thin films by means of Indium doping. Journal of Materials Science: Materials in Electronics, 2022, 33, 13782-13791.	2.2	5
112	Effect of Different Modes of Electrodeposition on Photoelectrochemical Cell Performance of Nanocrystalline Zinc Selenide Thin Films. Advanced Science Letters, 2016, 22, 759-765.	0.2	4
113	Deposition of Bi2CdS4 films by the spray pyrolysis technique. Physica Status Solidi A, 1984, 82, K195-K198.	1.7	3
114	SILAR deposited TiO[sub 2] thin film for supercapacitor application. AIP Conference Proceedings, 2013, ,	0.4	3
115	Studies on K-Sb-S films deposited at different substrate temperatures and their photoelectrochemical behaviour. Bulletin of Materials Science, 1988, 10, 341-347.	1.7	2
116	Facile synthesis and photo electrochemical performance of SnSe thin films. AIP Conference Proceedings, 2018, , .	0.4	2
117	Impedance Spectroscopic Analysis of Bi1 - xNdxFeO3. Ferroelectrics, 2005, 327, 57-61.	0.6	1
118	The enhanced supercapacitive performance of SnO[sub 2] combined with RuO[sub 2] by chemical synthesis. AIP Conference Proceedings, 2013, , .	0.4	1
119	Cadmium indium selenide semiconducting nanofibers by single step electrochemical route. Modern Physics Letters B, 2015, 29, 1540024.	1.9	1
120	Structural properties of single step electrochemically deposited ZnS nanofibers. , 2013, , .		0
121	The electrochemical performance of SnO[sub 2] film incorporated with RuO[sub 2]. , 2013, , .		0