Kasper Reitzel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9190257/publications.pdf Version: 2024-02-01

KASDED REITZEI

#	Article	IF	CITATIONS
1	Eutrophication management in surface waters using lanthanum modified bentonite: A review. Water Research, 2016, 97, 162-174.	5.3	252
2	Editorial – A critical perspective on geo-engineering for eutrophication management in lakes. Water Research, 2016, 97, 1-10.	5.3	203
3	Lake Restoration by Dosing Aluminum Relative to Mobile Phosphorus in the Sediment. Environmental Science & Technology, 2005, 39, 4134-4140.	4.6	179
4	Degradation rates of organic phosphorus in lake sediment. Biogeochemistry, 2007, 82, 15-28.	1.7	157
5	Phosphate adsorption by lanthanum modified bentonite clay in fresh and brackish water. Water Research, 2013, 47, 2787-2796.	5.3	141
6	Longevity and effectiveness of aluminum addition to reduce sediment phosphorus release and restore lake water quality. Water Research, 2016, 97, 122-132.	5.3	141
7	Characterization of Phosphate Sequestration by a Lanthanum Modified Bentonite Clay: A Solid-State NMR, EXAFS, and PXRD Study. Environmental Science & Technology, 2015, 49, 4559-4566.	4.6	113
8	Chemical Lake Restoration Products: Sediment Stability and Phosphorus Dynamics. Environmental Science & amp; Technology, 2010, 44, 985-991.	4.6	110
9	Effects of aluminum, iron, oxygen and nitrate additions on phosphorus release from the sediment of a Danish softwater lake. Hydrobiologia, 2003, 492, 139-149.	1.0	87
10	Influence of dissolved organic carbon on the efficiency of P sequestration by a lanthanum modified clay. Water Research, 2016, 97, 39-46.	5.3	85
11	Geoengineering in lakes: welcome attraction or fatal distraction?. Inland Waters, 2014, 4, 349-356.	1.1	76
12	Effects of aluminum treatment on phosphorus, carbon, and nitrogen distribution in lake sediment: A 31P NMR study. Water Research, 2006, 40, 647-654.	5.3	75
13	Geo-Engineering in Lakes: A Crisis of Confidence?. Environmental Science & Technology, 2014, 48, 9977-9979.	4.6	74
14	Biogenic phosphorus in oligotrophic mountain lake sediments: Differences in composition measured with NMR spectroscopy. Water Research, 2006, 40, 3705-3712.	5.3	73
15	pH dependent dissolution of sediment aluminum in six Danish lakes treated with aluminum. Water Research, 2013, 47, 1409-1420.	5.3	72
16	Responses in sediment phosphorus and lanthanum concentrations and composition across 10 lakes following applications of lanthanum modified bentonite. Water Research, 2016, 97, 101-110.	5.3	70
17	Degradation of organic phosphorus compounds in anoxic Baltic Sea sediments: A 31P nuclear magnetic resonance study. Limnology and Oceanography, 2006, 51, 2341-2348.	1.6	68
18	Characterization of phosphorus in sequential extracts from lake sediments using 31P nuclear magnetic resonance spectroscopy. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 1686-1699.	0.7	63

KASPER REITZEL

#	Article	IF	CITATIONS
19	Effects of Phoslock® treatment and chironomids on the exchange of nutrients between sediment and water. Hydrobiologia, 2013, 703, 189-202.	1.0	60
20	Occurrence of orthophosphate monoesters in lake sediments: significance of myo- and scyllo-inositol hexakisphosphate. Journal of Environmental Monitoring, 2011, 13, 2328.	2.1	59
21	Testing aluminum addition as a tool for lake restoration in shallow, eutrophic Lake SÃ,nderby, Denmark. Hydrobiologia, 2003, 506-509, 781-787.	1.0	52
22	Evaluation of aluminum treatment efficiency on water quality and internal phosphorus cycling in six Danish lakes. Hydrobiologia, 2015, 751, 189-199.	1.0	49
23	Sediment Phosphorus Extractants for Phosphorus-31 Nuclear Magnetic Resonance Analysis. Journal of Environmental Quality, 2007, 36, 892-898.	1.0	43
24	Long-term efficiency of lake restoration by chemical phosphorus precipitation: Scenario analysis with a phosphorus balance model. Water Research, 2016, 97, 153-161.	5.3	39
25	Identification of inositol hexakisphosphate binding sites in soils by selective extraction and solution 31P NMR spectroscopy. Geoderma, 2015, 257-258, 22-28.	2.3	37
26	Changed cycling of P, N, Si, and DOC in Danish Lake Nordborg after aluminum treatment. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68, 842-856.	0.7	35
27	Identification of Dissolved Nonreactive Phosphorus in Freshwater by Precipitation with Aluminum and Subsequent ³¹ P NMR Analysis. Environmental Science & Technology, 2009, 43, 5391-5397.	4.6	34
28	Phosphorus speciation and fertiliser performance characteristics: A comparison of waste recovered struvites from global sources. Geoderma, 2020, 362, 114096.	2.3	34
29	The influence of lake water alkalinity and humic substances on particle dispersion and lanthanum desorption from a lanthanum modified bentonite. Water Research, 2017, 125, 191-200.	5.3	33
30	Extraction and quantification of polyphosphates in activated sludge from waste water treatment plants by 31P NMR spectroscopy. Water Research, 2019, 157, 346-355.	5.3	32
31	Evaluation of dried amorphous ferric hydroxide CFH-12® as agent for binding bioavailable phosphorus in lake sediments. Science of the Total Environment, 2018, 628-629, 990-996.	3.9	29
32	New Training to Meet the Global Phosphorus Challenge. Environmental Science & Technology, 2019, 53, 8479-8481.	4.6	29
33	Diagenesis of settling seston: identity and transformations of organic phosphorus. Journal of Environmental Monitoring, 2012, 14, 1098.	2.1	27
34	Resuspension-mediated aluminium and phosphorus distribution in lake sediments after aluminium treatment. Hydrobiologia, 2013, 701, 79-88.	1.0	26
35	The combined effects of macrophytes (Vallisneria denseserrulata) and a lanthanum-modified bentonite on water quality of shallow eutrophic lakes: A mesocosm study. Environmental Pollution, 2021, 277, 116720.	3.7	23
36	Quantitative determination of vivianite in sewage sludge by a phosphate extraction protocol validated by PXRD, SEM-EDS, and 31P NMR spectroscopy towards efficient vivianite recovery. Water Research, 2021, 202, 117411.	5.3	23

KASPER REITZEL

#	Article	IF	CITATIONS
37	Dissolved Inorganic Geogenic Phosphorus Load to a Groundwater-Fed Lake: Implications of Terrestrial Phosphorus Cycling by Groundwater. Water (Switzerland), 2019, 11, 2213.	1.2	16
38	Calcium Affects Polyphosphate and Lipid Accumulation in Mucoromycota Fungi. Journal of Fungi (Basel, Switzerland), 2021, 7, 300.	1.5	16
39	Quantification of Biologically and Chemically Bound Phosphorus in Activated Sludge from Full-Scale Plants with Biological P-Removal. Environmental Science & Technology, 2022, 56, 5132-5140.	4.6	15
40	Variation in Phosphorus Speciation of Sewage Sludge throughout Three Wastewater Treatment Plants: Determined by Sequential Extraction Combined with Microscopy, NMR Spectroscopy, and Powder X-ray Diffraction. Environmental Science & Technology, 2022, 56, 8975-8983.	4.6	15
41	Role of Groundwater-Borne Geogenic Phosphorus for the Internal P Release in Shallow Lakes. Water (Switzerland), 2019, 11, 1783.	1.2	13
42	The importance of catchment vegetation for alkalinity, phosphorus burial and macrophytes as revealed by a recent paleolimnological study in a soft water lake. Science of the Total Environment, 2017, 580, 1097-1107.	3.9	11
43	Characterization of biogenic phosphorus in outflow water from constructed wetlands. Geoderma, 2015, 257-258, 58-66.	2.3	8
44	The effects of age on the demography of a perennial plant depend on interactions with size and environment. Journal of Ecology, 2021, 109, 1068-1077.	1.9	7
45	Drivers of largeâ€scale spatial demographic variation in a perennial plant. Ecosphere, 2021, 12, e03356.	1.0	7
46	The impact of climate change and eutrophication on phosphorus forms in sediment: Results from a long-term lake mesocosm experiment. Science of the Total Environment, 2022, 825, 153751.	3.9	7
47	External Phosphorus Loading in New Lakes. Water (Switzerland), 2022, 14, 1008.	1.2	5
48	Holocene lake phosphorus species and primary producers reflect catchment processes in a small, temperate lake. Ecological Monographs, 2021, 91, e01455.	2.4	4
49	Influence of pH and redox on mobilization of inositol hexakisphosphate from oligotrophic lake sediment. Biogeochemistry, 2018, 140, 15-30.	1.7	3
50	Simulated drawdown and rewetting of littoral sediments: implications for Lobelia lake management. Hydrobiologia, 2016, 778, 137-150.	1.0	1
51	Reduction of Internal Phosphorus Load in New Lakes by Pretreatment of the Former Agricultural Soil—Methods, Ecological Results and Costs. Sustainability, 2020, 12, 3575.	1.6	1