
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9190107/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasticity in Life-History Traits. Annual Review of Entomology, 1998, 43, 63-83.	5.7	841
2	Adaptive Plasticity and Plasticity as an Adaptation: A Selective Review of Plasticity in Animal Morphology and Life History. Oikos, 1995, 74, 3.	1.2	426
3	The Effect of Flexible Growth Rates on Optimal Sizes and Development Times in a Seasonal Environment. American Naturalist, 1996, 147, 381-395.	1.0	384
4	Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 4295-4302.	1.2	365
5	Diversity begets diversity: host expansions and the diversification of plant-feeding insects. BMC Evolutionary Biology, 2006, 6, 4.	3.2	310
6	Adaptive variation in growth rate: life history costs and consequences in the speckled wood butterfly,Pararge aegeria. Oecologia, 1994, 99, 281-289.	0.9	280
7	EVOLUTIONARY DYNAMICS OF HOST-PLANT SPECIALIZATION: A CASE STUDY OF THE TRIBE NYMPHALINI. Evolution; International Journal of Organic Evolution, 2001, 55, 783.	1.1	255
8	Proximate Causes of Rensch's Rule: Does Sexual Size Dimorphism in Arthropods Result from Sex Differences in Development Time?. American Naturalist, 2007, 169, 245-257.	1.0	229
9	Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1577-1586.	1.2	228
10	Higher level phylogeny of Satyrinae butterflies (Lepidoptera: Nymphalidae) based on DNA sequence data. Molecular Phylogenetics and Evolution, 2006, 40, 29-49.	1.2	184
11	The role of female search behaviour in determining host plant range in plant feeding insects: a test of the information processing hypothesis. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 701-707.	1.2	176
12	Sex-Related Variation in Growth Rate as a Result of Selection for Large Size and Protandry in a Bivoltine Butterfly, Pieris napi. Oikos, 1991, 60, 241.	1.2	143
13	BUTTERFLIES AND PLANTS: A PHYLOGENETIC STUDY. Evolution; International Journal of Organic Evolution, 1998, 52, 486-502.	1.1	143
14	Towards a better understanding of the higher systematics of Nymphalidae (Lepidoptera: Papilionoidea). Molecular Phylogenetics and Evolution, 2003, 28, 473-484.	1.2	139
15	Absence of Trade-Offs Between Sexual Size Dimorphism and Early Male Emergence in a Butterfly. Ecology, 1993, 74, 1414-1427.	1.5	130
16	Butterflies and Plants: A Phylogenetic Study. Evolution; International Journal of Organic Evolution, 1998, 52, 486.	1.1	123
17	Phylogenetic relationships and historical biogeography of tribes and genera in the subfamily Nymphalinae (Lepidoptera: Nymphalidae). Biological Journal of the Linnean Society, 2005, 86, 227-251.	0.7	122
18	Seasonal plasticity in growth and development of the speckled wood butterfly, Pararge aegeria (Satyrinae). Biological Journal of the Linnean Society, 1989, 38, 155-171.	0.7	115

SöREN NYLIN

#	Article	IF	CITATIONS
19	Sexual selection and speciation in mammals, butterflies and spiders. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 2309-2316.	1.2	113
20	The Oscillation Hypothesis of Host-Plant Range and Speciation. , 2008, , 203-215.		113
21	Phylogenetic Approaches in Ecology. Oikos, 1990, 57, 119.	1.2	109

Seasonal plasticity in life history traits: growth and development in Polygonia c-album (Lepidoptera:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

23	Mechanisms of macroevolution: polyphagous plasticity in butterfly larvae revealed by <scp>RNA</scp> â€ <scp>S</scp> eq. Molecular Ecology, 2013, 22, 4884-4895.	2.0	101
24	Achieving high sexual size dimorphism in insects: females add instars. Ecological Entomology, 2007, 32, 243-256.	1.1	100
25	Slowed aging during reproductive dormancy is reflected in genome-wide transcriptome changes in Drosophila melanogaster. BMC Genomics, 2016, 17, 50.	1.2	95
26	Embracing Colonizations: A New Paradigm for Species Association Dynamics. Trends in Ecology and Evolution, 2018, 33, 4-14.	4.2	94
27	HOST PLANT UTILIZATION, HOST RANGE OSCILLATIONS AND DIVERSIFICATION IN NYMPHALID BUTTERFLIES: A PHYLOGENETIC INVESTIGATION. Evolution; International Journal of Organic Evolution, 2014, 68, 105-124.	1.1	92
28	Intraspecific variability in number of larval instars in insects. Journal of Economic Entomology, 2007, 100, 627-45.	0.8	91
29	Seasonal Plasticity in Two Satyrine Butterflies: State-Dependent Decision Making in Relation to Daylength. Oikos, 1999, 84, 453.	1.2	90
30	Host Plant Specialization and Seasonality in a Polyphagous Butterfly, Polygonia C-Album (Nymphalidae). Oikos, 1988, 53, 381.	1.2	85
31	Ovi position preference and larval performance in <i>Polygonia câ€album</i> (Lepidoptera: Nymphalidae): the choice between bad and worse. Ecological Entomology, 1993, 18, 394-398.	1.1	83
32	Host plant utilization in the comma butterfly: sources of variation and evolutionary implications. Oecologia, 1994, 99, 132-140.	0.9	81
33	Biogeographic history of the butterfly subtribe Euptychiina (Lepidoptera, Nymphalidae, Satyrinae). Zoologica Scripta, 2010, 39, 243-258.	0.7	79
34	Butterfly host plant range: an example of plasticity as a promoter of speciation?. Evolutionary Ecology, 2009, 23, 137-146.	0.5	77
35	Sex in an Evolutionary Perspective: Just Another Reaction Norm. Evolutionary Biology, 2010, 37, 234-246.	0.5	70
36	The radiation of Satyrini butterflies (Nymphalidae: Satyrinae): a challenge for phylogenetic methods. Zoological Journal of the Linnean Society, 2011, 161, 64-87.	1.0	68

#	Article	IF	CITATIONS
37	Process and Pattern in the Evolution of Species Associations. Systematic Zoology, 1990, 39, 323.	1.6	67
38	Individual state controls temperature dependence in a butterfly (Lasiommata maera). Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 589-593.	1.2	67
39	Genetic variation underlying local adaptation of diapause induction along a cline in a butterfly. Molecular Ecology, 2018, 27, 3613-3626.	2.0	67
40	Morphology versus molecules: resolution of the positions of Nymphalis, Polygonia, and related genera (Lepidoptera: Nymphalidae). Cladistics, 2003, 19, 213-223.	1.5	66
41	Induction of diapause and seasonal morphs in butterflies and other insects: knowns, unknowns and the challenge of integration. Physiological Entomology, 2013, 38, 96-104.	0.6	66
42	Unprecedented reorganization of holocentric chromosomes provides insights into the enigma of lepidopteran chromosome evolution. Science Advances, 2019, 5, eaau3648.	4.7	66
43	No effect of larval experience on adult host preferences in <i>Polygonia câ€album</i> (Lepidoptera:) Tj ETQq1 1 34, 50-57.	0.784314 1.1	rgBT /Over 65
44	Effects of changing photoperiods in the life cycle regulation of the comma butterfly, Polygonia c-album (Nymphalidae). Ecological Entomology, 1989, 14, 209-218.	1.1	64
45	Dynamics of host plant use and species diversity in Polygonia butterflies (Nymphalidae). Journal of Evolutionary Biology, 2006, 19, 483-491.	0.8	64
46	Energy and lipid metabolism during direct and diapause development in a pierid butterfly. Journal of Experimental Biology, 2016, 219, 3049-3060.	0.8	64
47	Life history perspectives on pest insects: What's the use?. Austral Ecology, 2001, 26, 507-517.	0.7	59
48	Life-cycle regulation and life history plasticity in the speckled wood butterfly: are reaction norms predictable?. Biological Journal of the Linnean Society, 1995, 55, 143-157.	0.7	58
49	Butterfly Host Plant Choice in the Face of Possible Confusion. Journal of Insect Behavior, 2000, 13, 469-482.	0.4	58
50	Does plasticity drive speciation? Host-plant shifts and diversification in nymphaline butterflies (Lepidoptera: Nymphalidae) during the tertiary. Biological Journal of the Linnean Society, 0, 94, 115-130.	0.7	58
51	Host plant preferences in the comma butterfly (<i>Polygonia c-album</i>): Do parents and offspring agree?. Ecoscience, 1996, 3, 285-289.	0.6	53
52	Timing of diapause termination in relation to variation in winter climate. Physiological Entomology, 2017, 42, 232-238.	0.6	53
53	Latitudinal Body Size Clines in the Butterfly <i>Polyommatus icarus</i> are Shaped by Gene-Environment Interactions. Journal of Insect Science, 2008, 8, 1-13.	0.6	52
54	A SEX DIFFERENCE IN THE PROPENSITY TO ENTER DIRECT/DIAPAUSE DEVELOPMENT: A RESULT OF SELECTION FOR PROTANDRY. Evolution; International Journal of Organic Evolution, 1992, 46, 519-528.	1.1	51

#	Article	IF	CITATIONS
55	Compensatory responses in lepidopteran larvae: a test of growth rate maximisation. Oikos, 2004, 107, 352-362.	1.2	51
56	Mating opportunity and the evolution of sex-specific mortality rates in a butterfly. Oecologia, 2000, 122, 36-43.	0.9	50
57	Timing major conflict between mitochondrial and nuclear genes in species relationships of Polygonia butterflies (Nymphalidae: Nymphalini). BMC Evolutionary Biology, 2009, 9, 92.	3.2	48
58	Local adaptation of photoperiodic plasticity maintains life cycle variation within latitudes in a butterfly. Ecology, 2019, 100, e02550.	1.5	46
59	Seasonal plasticity and life-cycle adaptations in butterflies. , 1994, , 41-67.		46
60	Speciation inPararge(Satyrinae: Nymphalidae) butterflies - North Africa is the source of ancestral populations of allParargespecies. Systematic Entomology, 2006, 31, 621-632.	1.7	45
61	Characterization of Reproductive Dormancy in Male Drosophila melanogaster. Frontiers in Physiology, 2016, 7, 572.	1.3	43
62	Mating system and the evolution of sex-specific mortality rates in two nymphalid butterflies. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1823-1828.	1.2	40
63	REACTION NORMS FOR AGE AND SIZE AT MATURITY IN <i>LASIOMMATA</i> BUTTERFLIES: PREDICTIONS AND TESTS. Evolution; International Journal of Organic Evolution, 1996, 50, 1351-1358.	1.1	39
64	Oviposition plant preference and offspring performance in the comma butterfly: correlations and conflicts. Entomologia Experimentalis Et Applicata, 1996, 80, 141-144.	0.7	39
65	Phylogeny of Polygonia, Nymphalis and related butterflies (Lepidoptera: Nymphalidae): a total-evidence analysis. Zoological Journal of the Linnean Society, 2001, 132, 441-468.	1.0	39
66	Genetics of host-plant preference in the comma butterfly Polygonia c-album (Nymphalidae), and evolutionary implications. Biological Journal of the Linnean Society, 2005, 84, 755-765.	0.7	38
67	Genetics of diapause in the comma butterfly <i>Polygonia câ€album</i> . Physiological Entomology, 2011, 36, 8-13.	0.6	38
68	Effects of Larval Host Plant and Sex on the Propensity to Enter Diapause in the Comma Butterfly. Oikos, 1997, 78, 569.	1.2	37
69	Host plant selection behaviour of Chilo partellus and its implication for effectiveness of a trap crop. Entomologia Experimentalis Et Applicata, 2011, 138, 40-47.	0.7	37
70	Evolutionary history of host use, rather than plant phylogeny, determines gene expression in a generalist butterfly. BMC Evolutionary Biology, 2016, 16, 59.	3.2	36
71	Mating system evolution in response to search costs in the speckled wood butterfly, Pararge aegeria. Behavioral Ecology and Sociobiology, 1999, 45, 424-429.	0.6	35
72	Are peripheral populations special? Congruent patterns in two butterfly species. Ecography, 2009, 32, 591-600.	2.1	35

#	Article	IF	CITATIONS
73	Unifying host-associated diversification processes using butterfly–plant networks. Nature Communications, 2018, 9, 5155.	5.8	35
74	Genetics of host plant use and life history in the comma butterfly across Europe: varying modes of inheritance as a potential reproductive barrier. Journal of Evolutionary Biology, 2006, 19, 1882-1893.	0.8	34
75	Sexâ€linked inheritance of diapause induction in the butterfly <i><scp>P</scp>ieris napi</i> . Physiological Entomology, 2017, 42, 257-265.	0.6	33
76	Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies. Nature Communications, 2021, 12, 5717.	5.8	33
77	How to compare fluctuating asymmetry of different traits. Journal of Evolutionary Biology, 2000, 13, 29-37.	0.8	32
78	Latitudinal patterns in the size of European butterflies. Ecography, 1991, 14, 192-202.	2.1	30
79	Reaction Norms for Age and Size at Maturity in Lasiommata Butterflies: Predictions and Tests. Evolution; International Journal of Organic Evolution, 1996, 50, 1351.	1.1	29
80	Implications of a temperature increase for host plant range: predictions for a butterfly. Ecology and Evolution, 2013, 3, 3021-3029.	0.8	29
81	Molecular phylogeny of Lymantriinae (Lepidoptera, Noctuoidea, Erebidae) inferred from eight gene regions. Cladistics, 2015, 31, 579-592.	1.5	29
82	EVOLUTIONARY DYNAMICS OF HOST-PLANT SPECIALIZATION: A CASE STUDY OF THE TRIBE NYMPHALINI. Evolution; International Journal of Organic Evolution, 2001, 55, 783-796.	1.1	28
83	Phylogenetics of Coenonymphina (Nymphalidae: Satyrinae) and the problem of rooting rapid radiations. Molecular Phylogenetics and Evolution, 2010, 54, 386-394.	1.2	28
84	A Sex Difference in the Propensity to Enter Direct/Diapause Development: A Result of Selection for Protandry. Evolution; International Journal of Organic Evolution, 1992, 46, 519.	1.1	27
85	Hostâ€plant quality adaptively affects the diapause threshold: evidence from leaf beetles in willow plantations. Ecological Entomology, 2012, 37, 490-499.	1.1	27
86	Bayesian Inference of Ancestral Host–Parasite Interactions under a Phylogenetic Model of Host Repertoire Evolution. Systematic Biology, 2020, 69, 1149-1162.	2.7	27
87	Effects of Population Size and Food Stress on Fitness-Related Characters in the Scarce Heath, a Rare Butterfly in Western Europe. Conservation Biology, 2001, 15, 1667-1673.	2.4	26
88	Specialist and generalist oviposition strategies in butterflies: maternal care or precocious young?. Oecologia, 2016, 180, 335-343.	0.9	26
89	Metabolome dynamics of diapause in the butterfly <i>Pieris napi</i> : distinguishing maintenance, termination and post-diapause phases. Journal of Experimental Biology, 2018, 221, .	0.8	25
90	ldiosyncratic development of sensory structures in brains of diapausing butterfly pupae: implications for information processing. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170897.	1.2	24

#	Article	IF	CITATIONS
91	Host plant choice in the comma butterfly–larval choosiness may ameliorate effects of indiscriminate oviposition. Insect Science, 2014, 21, 499-506.	1.5	23
92	Geographical variation in host plant utilization in the comma butterfly: the roles of time constraints and plant phenology. Evolutionary Ecology, 2009, 23, 807-825.	0.5	22
93	Host use dynamics in a heterogeneous fitness landscape generates oscillations in host range and diversification. Evolution; International Journal of Organic Evolution, 2018, 72, 1773-1783.	1.1	21
94	Structural plasticity of olfactory neuropils in relation to insect diapause. Ecology and Evolution, 2020, 10, 14423-14434.	0.8	21
95	Polyphagy and diversification in tussock moths: Support for the oscillation hypothesis from extreme generalists. Ecology and Evolution, 2017, 7, 7975-7986.	0.8	20
96	Putting more eggs in the best basket: clutch-size regulation in the comma butterfly. Ecological Entomology, 2006, 31, 255-260.	1.1	19
97	Population structure in relation to host-plant ecology and Wolbachia infestation in the comma butterfly. Journal of Evolutionary Biology, 2011, 24, 2173-2185.	0.8	18
98	On oscillations and flutterings-A reply to Hamm and Fordyce. Evolution; International Journal of Organic Evolution, 2016, 70, 1150-1155.	1.1	18
99	Body size response to warming: time of the season matters in a tephritid fly. Oikos, 2016, 125, 386-394.	1.2	17
100	Phylogenetic reconstruction of ancestral ecological networks through time for pierid butterflies and their host plants. Ecology Letters, 2021, 24, 2134-2145.	3.0	17
101	Genetics of development time in a butterfly: predictions from optimality and a test by subspecies crossing. Proceedings of the Royal Society B: Biological Sciences, 1994, 257, 215-219.	1.2	16
102	Species range expansion constrains the ecological niches of resident butterflies. Journal of Biogeography, 2017, 44, 28-38.	1.4	16
103	Investigating Concordance among Genetic Data, Subspecies Circumscriptions and Hostplant Use in the Nymphalid Butterfly Polygonia faunus. PLoS ONE, 2012, 7, e41058.	1.1	15
104	Male butterflies use an antiâ€aphrodisiac pheromone toÂtailor ejaculates. Functional Ecology, 2016, 30, 255-261.	1.7	15
105	Threat status in butterflies and its ecological correlates: how far can we generalize?. Biodiversity and Conservation, 2009, 18, 3243-3267.	1.2	13
106	Adaptation to fluctuating environments in a selection experiment with <i>Drosophila melanogaster</i> . Ecology and Evolution, 2017, 7, 3796-3807.	0.8	13
107	Phylogenetic relatedness and host plant growth form influence gene expression of the polyphagous comma butterfly (Polygonia c-album). BMC Genomics, 2009, 10, 506.	1.2	12
108	Selective attention by priming in host search behavior of 2 generalist butterflies. Behavioral Ecology, 2019, 30, 142-149.	1.0	12

#	Article	IF	CITATIONS
109	Phylogeny, Systematics and Biogeography of the Genus Panolis (Lepidoptera: Noctuidae) Based on Morphological and Molecular Evidence. PLoS ONE, 2014, 9, e90598.	1.1	11
110	It's All in the Mix: Blend-Specific Behavioral Response to a Sexual Pheromone in a Butterfly. Frontiers in Physiology, 2016, 7, 68.	1.3	11
111	An adaptive explanation for male-biased sex ratios in overwintering monarch butterflies. Animal Behaviour, 1995, 49, 511-514.	0.8	10
112	Title is missing!. Journal of Insect Conservation, 2000, 4, 253-261.	0.8	10
113	Vestiges of an ancestral host plant: preference and performance in the butterfly P olygonia faunus and its sister species P . câ€album. Ecological Entomology, 2015, 40, 307-315.	1.1	9
114	Microevolutionary selection dynamics acting on immune genes of the greenâ€veined white butterfly, <i>Pieris napi</i> . Molecular Ecology, 2018, 27, 2807-2822.	2.0	9
115	Genetics of fluctuating asymmetry in pupal traits of the Speckled Wood butterfly (Pararge aegeria). Heredity, 2002, 89, 225-234.	1.2	8
116	Insect brain plasticity: effects of olfactory input on neuropil size. Royal Society Open Science, 2019, 6, 190875.	1.1	8
117	Chromosome Level Assembly of the Comma Butterfly (Polygonia c-album). Genome Biology and Evolution, 2021, 13, .	1.1	8
118	A phylogenomic tree inferred with an inexpensive <scp>PCR</scp> â€generated probe kit resolves higherâ€level relationships among <i>Neptis</i> butterflies (Nymphalidae: Limenitidinae). Systematic Entomology, 2020, 45, 924-934.	1.7	8
119	Local adaptation of life cycles in a butterfly is associated with variation in several circadian clock genes. Molecular Ecology, 2022, 31, 1461-1475.	2.0	8
120	Conservative resource utilization in the common blue butterfly-evidence for low costs of accepting absent host plants?. Oikos, 2004, 107, 345-351.	1.2	7
121	Quantitative genetic variation in an island population of the speckled wood butterfly (Pararge) Tj ETQq1 1 0.784	314 rgBT 1.2	/Oyerlock 10
122	Extensive transcriptomic profiling of pupal diapause in a butterfly reveals a dynamic phenotype. Molecular Ecology, 2022, 31, 1269-1280.	2.0	7
123	Why stay in a bad relationship? The effect of local host phenology on a generalist butterfly feeding on a low-ranked host. BMC Evolutionary Biology, 2016, 16, 144.	3.2	5
124	Volatiles released from foliar extract of host plant enhance landing rates of gravid <i><scp>P</scp>olygonia câ€album</i> females, but do not stimulate oviposition. Entomologia Experimentalis Et Applicata, 2016, 158, 275-283.	0.7	5
125	Molecular phylogenetic and morphological studies on the systematic position of <i>Heracula discivitta</i> reveal a new subfamily of Pseudobistonidae (Lepidoptera: Geometroidea). Systematic Entomology, 2019, 44, 211-225.	1.7	5
126	A Population Genomic Investigation of Immune Cell Diversity and Phagocytic Capacity in a Butterfly. Genes, 2021, 12, 279.	1.0	5

#	Article	IF	CITATIONS
127	A region of the sex chromosome associated with population differences in diapause induction contains highly divergent alleles at clock genes. Evolution; International Journal of Organic Evolution, 2021, 75, 490-500.	1.1	5
128	Physiological Tradeoffs of Immune Response Differs by Infection Type in Pieris napi. Frontiers in Physiology, 2020, 11, 576797.	1.3	4
129	Differential responses of body growth to artificial warming between parasitoids and hosts and the consequences for plant seed damage. Scientific Reports, 2017, 7, 15472.	1.6	2
130	Morphology versus molecules: resolution of the positions of Nymphalis, Polygonia, and related genera (Lepidoptera: Nymphalidae). , 2003, 19, 213.		2
131	Nonvolatile Chemical Cues Affect Host-Plant Ranking by Gravid Polygonia c-album Females. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2012, 67, 0093.	0.6	2
132	Nonvolatile Chemical Cues Affect Host-Plant Ranking by Gravid Polygonia c-album Females. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2012, 67, 93-102.	0.6	1
133	Reviews: Butterflies of British Columbia, Photographic guide to the butterflies of Britain & Europe, Butterflies of Britain and Ireland mapped. Entomologica Fennica, 2001, 12, 251-253.	0.6	0
134	Oviposition plant preference and offspring performance in the comma butterfly: correlations and conflicts. , 1996, , 141-144.		0